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PREFACE

This book contains refereed papers presented at the Fifth IEEE Workshop on
Neural Networks for Signal Processing (NNSP'95) at the Royal Sonesta Hotel,
Cambridge, MA, on August 31 st - September 2nd, 1995.

NNSP'95 was sponsored by the Neural Networks Technical Committee of the
IEEE Signal Processing Society, in cooperation with the IEEE Neural Network
Council and with co-sponsorship from ONR/ARPA and NSF (through CBCL,
the Center for Biological and Computational Learning at MIT). The Workshop
is designed to serve as a regular forum for researchers from universities and
industry who are interested in interdisciplinary research on neural networks for
signal processing applications. NNSP'95 offers a showcase for current research
results in key areas, including learning algorithms, network architectures,
speech processing, image processing, computer vision, adaptive signal
processing, medical signal processing, digital communications and other
applications.

Our deep appreciation is extended to Prof. Abu-Mostafa of Caltech, Prof. John
Moody of Oregon Graduate Institute, Prof. S.Y. Kung, of Princeton U., Prof.
Michael I. Jordan of MIT and Dr. Vladimir Vapnik of AT&T Bell Labs, for
their insightful plenary talks. Thanks to Dr. Gary Kuhn of Siemens Corporate
Research for organizing a wonderful evening panel discussion on "Why Neural
Networks are not Dead". Our sincere thanks go to all the authors for their
timely contributions and to all the members of the Program Committee for the
outstanding and high-quality program. We would like to thank the other
members of the Organizing Committee: Finance Chair Dr. Judy Franklin of
GTE Lab. Inc., and Local Arrangements Chair Mary Pat Fitzgerald of MIT, for
the superb job they have done.

It is worth mentioning that this year we did not generate any post office mail
and the whole NNSP'95 organization and review of papers were handled
electronically. Special thanks are extended to the Publicity Chair Marney
Smyth of MIT for maintaining the NNSP'95 WWW home page (URL:
http://www.cdsp.neu.edu/info/ nnsp95.html) and running an effective publicity
"campaign" on the Internet. Also to Anna Patch of the Communications and

Digital Signal Processing (CDSP) Center for research and graduate studies at
Northeastern U. for managing the database, and to Stylianos Markogiannakis
of CDSP for writing the software that allowed us to handle very efficiently the
review process. We plan to make this software available on ftp for future
conference organizations.

V



Finally vlc would like to acknowledge Dr. Barbara Yoon of ARPA for her
continued enthusiasm and support in this emerging cross-disciplinary fleld.

Elas S. Manolakos. CDSP Center, Northeastern U.
Federico Girosi. CBCL, MIT
John MNakhoul. BBV
Beth \Vilson. Raytheon Company

vi



Table of Contents

Preface V

Part 1 Theory

Missing and Noisy Data in Nonlinear Time-Series Prediction I
Volker Tresp

Non-Linear Time Series Modeling with Self-Organization Feature Maps 11
Jose C. Principe, Ludong Wang

Neural Networks for Function Approximation 21
H.N. Mhaskar, L.Khachikyan

Empirical Generalization Assessment of Neural Network Models 30
Jan Larsen, Lars Kai Hansen

Active Learning the Weights of a RBF Network 40
Kah-Kay Sung, Partha Niyogi

A Novel Approach to Pattern Recognition Based on Discriminative
Metric Design 48
Hideyuki Watanabe, Tsuyoshi Yamaguchi, Shigeru Katagiri

A Maximum Entropy Approach for Optimal Statistical Classification 58
David Miller, Ajit Rao, Kenneth Rose, Allen Gersho

Simultaneous Design of Feature Extractor and Pattern Classifier Using 67
the Minimum Classification Error Training Algorithm
K.K.Paliwal, M. Bacchiani, Y. Sagisaka

Discriminative Subspace Method for Minimum Error Pattern Recognition 77
Hideyuki Watanabe, Shigeru Katagiri

A unifying view of Stochastic Approximation Kalman Filter and
Backpropagation 87
Enrico Capobianco

Globally-Ordered Topology-Preserving Maps Achieved with a Learning
Rule Performing Local Weight Updates Only 95
Marc M. Van Hulle



A Self-Organizing System for the Development of Neural Network
Parameter Estimators 105
Michael Manry

Recognition of Oscillatory Signals Using a Neural Network Oscillator 115
Masakazu Matsugu, Chi-Sang Poon

Principal Feature Classification 125
Donald W. Tufts, Qi Li

A Habituation Based Neural Network Structure for Classifying
Spatio-Temporal Patterns 135
Bryan W. Stiles, Joydeep Ghosh

A Numerical Approach for Estimating Higher Order Spectra Using
Neural Network Autoregressive Model 145
Naohiro Toda, Shiro Usui

Fuzzy Neural Network Approach Based on Dirichlet Tesselations
for Nearest Neighbor Classification of Patterns 153
K. Blekas, A. Likas, A. Stafylopatis

The Dynamics of Associative Memory with a Self-Consistent Noise 162
loan Opris

Recursive Nonlinear Identification using Multiple Model Algorithm 171
Visakan Kadirkamanathan

Mutual Information in a Linear Noisy Network 181
Alessandro Campa, Paolo Del Giudice, Nestor Parga, Jean-Pierre Nadal

Constrained Pole-Zero Filters as Discrete-Time Operators for System
Approximation 191
Andrew D. Back, Ah Chung Tsoi

Prior Knowledge and the Creation of "Virtual" Examples for RBF
Networks 201
F. Girosi, N. Chan

viii



Part 2 Speech Processing

Speaker Verification using Phoneme-Based Neural Tree Networks and
Phonetic Weighting Scoring Method 213
Han-Sheng Liou, Richard J. Mammone

Scaling Down: Applying Large Vocabulary Hybrid HMM-MLP Methods to
Telephone Recognition of Digits and Natural Numbers 223
Kristine Ma, Nelson Morgan

Combining Local PCA and Radial Basis Function Networks for Speaker
Normalization 233
Cesare Furlanello, D. Giuliani

Discriminatory Measures for Speaker Recognition 243
Kevin R. Farrell

From Artificial Neural Network Inversion to Hidden Markov Model
Inversion: Application to Robust Speech Recognition 253
Seokyong Moon, Jenq-Neng Hwang

Hierarchical Mixtures of Experts Methodology Applied to Continuous
Speech Recognition 263
Ying Zhao, Richard Schwartz, Jason Sroka, John Makhoul

A Speech Recognizer with Low Complexity Based on RNN 272
Claus Kasper, Herbert Reininger, Dietrich Wolf, Harald Wust

Automatic Speech Segementation Using Neural Tree Network (NTN) 282
Manish Sharna, Richard Mammone

Part 3 Image Processing and Computer Vision

Motion Estimation and Segmentation using a Recurrent Mixture of Experts
Architecture 293
Yair Weiss, Edward H. Adelson

Using perceptron-like algorithms for the analysis and parameterization of
object motion 303
M. Mattavelli, E. Amaldi

ix



A Multiple Scale Neural System for Boundary and Surface Representation
of SAR Data 313
Stephen Grossberg, Ennio Mingolla, James Williamson

A Neural Network Approach to Face/Palm Recognition 323
S.Y. Kung, Shang-Hung Lin, Ming Fang

A Probabilistic DBNN with Applications to Sensor Fusion and Object
Recognition 337
Shang-Hung Lin, S.Y. Kung, Long-Ji Lin

Sample Weighting when Training Self-Organizing Maps for Image
Compression 343
Jari Kangas

Estimating Image Velocity with Convected Activation Profiles: Analysis
and Improvements for Special Cases 351
Robert K. Cunningham, Allen M. Waxman

Pruning Projection Pursuit Models for Improved Cloud Detection in
AVIRIS Imagery 361
Charles M. Bachmann, Eugene E. Clothiaux, John W. Moore, Dong Q. Luong

A New Learning Scheme for the Recognition of Dynamic Handwritten
Characters 371
Fidimahery Andrianasy, Maurice Milgram

Velocity Measurement of Granular Flow with a Hopfield Network 380
Jingeol Lee, Jose C. Principe, Daniel M. Hanes

Neural Network Based Image Segmentation for Image Interpolation 388
Stefano Marsi, Sergio Carrato

Learning a Distribution-based Face Model for Human Face Detection 398
Kah-Kay Sung, Tomaso Poggio

Action-Based Neural Networks for Effective Recognition of Images 407
Vassilios N. Alexopoulos, Stefanos D. Kollias

Feature-Locked Loop and its Application to Image Databases 417
Alex Sherstinsky, Rosalind W. Picard

An Error Diffusion Neural Network for Digital Image Halftoning 427
Barry L. Shoop, Eugene K. Ressler

x



Part 4 Applications and Implementations

Estimation of the Glucose Metabolism from Dynamic PET-Scans Using
Neural Networks 439
Claus Svarer, Soren Holm, Niels Morch, Olaf Paulson and L.K. Hansen

Nonlinear Echo Cancellation Using a Partial Adaptive Time Delay Neural
Network 449
A.N. Birkett, R.A. Goubran

Customized ECG Beat Classifier Using Mixture of Experts 459
Yu Hen Hu, Surekha Palreddy, Willis J. Tompkins

Semiautomated Extraction of Decision Relevant Features from a Raw Data
Based Artificial Neural network Demonstrated by the Problem of Saccade
Detection in EOG Recordings of Smooth Pursuit Eye Movements 465
Peter K. Tigges, Norbert Kathmann, RolfR. Engel

EEG Signal Classification with Different Signal Representations 475
Charles W. Anderson, Saikumar V. Devulapalli, Erik A. Stolc

Design and Evaluation of Neural Classifiers - Application to Skin Lesion
Classification 484
Mads Hintz-Madsen, Lars Kai Hansen, Jan Larsen, Eric Olesen and
Krzysztof T. Drzewiecki

A Study of the Application of the CMAC Artificial Neural Network to the
Problem of Gas Sensor Array Calibration 494
Parag M. Bajaria, Bruce E. Segee

Classification of Gamma Ray Signals Using Neural Networks 504
N.G. Bourbakis, A. Tacsillo, M. Tacsillo

Adaptive Preprocessing for On-Line Learning with Adaptive Resonance
Theory (ART) Networks 513
Harald Ruda, Magnus Snorasson

Intelligent Network Monitoring 521
CyrAtl-ih S. Hood, Chuanyi Ji

xi



A Robust Backward Adaptive Quantizer 531
Dominique Martinez, Woodward Yang

A Maximum Partial Likelihood Framework for Channel Equalization by
Distribution Learning 541
Tulay Adali, Xiao Liu, Kemal Sonmez

Constructive Neural Network Design for the Solution of Two State
Classification: Problems with Application to Channel Equalization 551
Catherine Z.W. Hassell Sweatman, Gavin J. Gibson, Bernard Mulgrew

A Parallel Mapping of Backpropagation Algorithm for Mesh Signal
Processor 561
Shoab A. Khan, Vijay K. Madisetti

Digital Neuroimplementations of Visual Motion-Tracking Systems 571
Anna Maria Colla, Luca Trogu, Rodolfo Zunino

Level Crossing Time Interval Circuit for Micropower Analog VLSI
Auditory Processing 581
Nagendra Kumar, Gert Cauwenberghs, Andreas G. Andreou

Part 5 Communications

Optimum Lag and Subset Selection for Radial Basis Function Equaliser 593
Eng-Siong Chng, Bernard Mulgrew, Shen Chen, Gavin Gibson

Channel Equalization by Finite Mixtures and EM Algorithm 603
Lei Xu

Comparison of a Neural Network based Receiver to the Optimal and
Multistage CDMA Multiuser Detectors 613
George Kechriotis, Elias S. Manolakos

Author Index 623

xii



Theory



Missing and Noisy Data in Nonlinear

Time-Series Prediction

Volker Tresp and Reimar Hofmann
Siemens AG, Central Research

81730 Munich, Germany*

Abstract

We discuss the issue of missing and noisy data in nonlinear time-
series prediction. We derive fundamental equations both for prediction
and for training. Our discussion shows that if measurements are noisy
or missing, treating the time series as a static input/output mapping
problem (the usual time-delay neural network approach) is subopti-
mal. We describe approximations of the solutions which are based on
stochastic simulations. A special case is K-step prediction in which
a one-step predictor is iterated K times. Our solutions provide error
bars for prediction with missing or noisy data and for K-step predic-
tion. Using the K-step iterated logistic map as an example, we show
that the proposed solutions arc a considerable improvement, over sim-
ple heuristic solutions. Using our formalism we derive algorithms for
training recurrent, networks, for control of stochastic systems and for
reinforcement learning problems.

1 Introduction

Missing data in time-series prediction are a commonl problem in many appli-
cations. The goal is to obtain valid predictions even if sorie measurements
become unavailable or are not recorded. Similarly, training data are often
incomplete. In this paper we analyze this problem from a probabilistic point,
of view. In previous publications the problem of learning and prediction with
missing and noisy features in (static) estimation problems was examined (see,
for example [2, 3, 4]). The solutions for botlh predict ion and learning consisted
of integrals over the unknown variable weighted by the conditional probability
density of the unknown variable given the known variables. The basic idea is
the same for missing data in time-series prediction, but here, we can exploit
the fact that the missing measurement itself is part of the time series. Similar

*Volker.Trespnzfe.siemens.de, Reiinar.I-lofinarinn'zfe.sicmens.de

0-7803-2739-X/95 $4.00 © 1995 IEEE
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It is convenient to unfold the system in time which leads to the system

shown in Figure 1. The realizations of the time series are now random vari-

ables in a probabilistic network. Our problem is to predict Yt using the
available information. According to our assumptions, the joint probability

density is
t

P(Y, Y2, ... ,t) = P(YI, , YN) 1[ P(YI Y1-,, YI-N). (4)
/=N+1

Let's now assume that Yt-k with k < N is missing. Let yp" {yt-k} and let
pYm = {Yt-1 ... Yt-k-NI \ {Yt-k}. We can calculate the expected value of the

next realization of the time series as

E(ytIVt-1) = J f(PYti-,I..Y...i tki..,Yt-N) P(.'pliy") dy'p (5)

where MAt-I stands for all measurements up to t - 1. The last equation is
the fundamental equation for prediction with missing data. Note, that the

unknown yt-k is not only dependent on realizations of the time series previous
to t - k but also on measurements after t - k. The reason is that the variables
in y' U Yt form a minimal Markov blanket of yt-k in the Bayesian net in Fig-
ure 1. A minimal Markov blanket in a Bayesian network consists of the direct
parents, the direct successors of a variable and all direct parents of a variables
direct successor. In our case, the direct, successors are Yt ... Yt-k+l, the direct

parents are Yt-k-i1 . . Yt-k-N and the direct parents of a variables direct suc-

cessor are Yt-i... Yt-k-N+±. The theory of Bayesian and Markov networks
now tells us that a variable is independent of all other variables in the network
if the variables in the Markov blanket are known (see Figure 1). This discus-
sion shows that simply approximating Yt-k • f(Yt-k-1, yt-k-2,. . ., Yt-k-g)

is suboptimal. The required conditional density in Equation 5 is (recall that

P U = Yt-k)

P (Yu1 ly re) OC P ( t-11Yt- 2, . . ., Yt-k, ... Yt-I-N)

xP(Yt- 2 lpt-, ... ,yt-k, - - . , yt-2-N) . . . P(yt-k Yt-t-k1 ... M yt-k-N).

This expression can be evaluated easily using Equation 1 or in the Gaussian
noise case Equation 3.

2.2 Several Missing Realizations

From the preceding discussion it should be clear that nothing changes if the
missing realizations are separated by more than N known realizations. Then
the Markov blankets of the missing variable are still completely known. If this
is not the case we obtain Equation 5 where yp Cq {Yt-i, Yt-2k..., yt-NJ} denote
all missing instances between t - 1 and t - N of the time series and where
Yp Cq {Pt-i, Yt-2,. .. , YP4 denote the set of all measurement up to i - 1. Also

P(y"Y) CC P(Yt- 1 , ... , Y2, Yd) where the right-hand side is obtained from

Equation 4.
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2.3 Training with Missing Realizations

We consider the case that Yl,..., yt are possible realizations. Let ym C
{Yl,..., Yt } denote the set of all measurements and yU = {y1,...,yt I\ y" the
set of all unknowns. Our model is assumed to be a neural network parame-
terized by a set of weights w

f (Yt-1,...- , Yt-N) Rý NN. (Yt-1,., Yt-N)

or any other kind of parameterized function approximator. The log-likelihood
function of the time series is L = logf PM(yt, Yt-, ... , Y2, yl) dyu. Here

t

pM(yt, Yt-l,...,Y2, Yl)-= pM(yN,...,Yl) JJ pMM(y1lY-I" YI-N)" (6)

l=N+1

is an approximation to the joint density and

pM(yt1Yt-i, Yt-2, .. . , Yt-N) = Pý(yt - NNg(yt-i, Yt-2, .. ., Yt-N)). (7)

For backpropagation learning or other gradient based learning algorithms we
need the gradient of the log-likelihood with respect to the weights which is1

Ow a 0JogPM(Y1Yt-1,"'"YL-N) pM(u(1)ym) dyu(l). (8)
/=N+I

In case of Gaussian noise, OL

t: f(y - NNw(yu-l,...,Y1-N)) ONNw(yx,... YNPM) (yu)I dyu().
/=N+W

where yu•() = yU n {YI,... Y-N} are the missing realizations in the input of
the network. The last equation shows that if all Y1 ... YL-N are known, the
integral "disappears".

3 Prediction and Training with Noisy Mea-
surements

Let again Yt = f(Yt-1, Yt-2, ... , Yt-N) + Ct but now we assume that we have
no access to yt directly. Instead, we measure zt = Yt + 6t where &5 is inde-
pendent zero-mean noise. Let z = {z .. .zt- 1 } and y = {Yl ... yt}. The joint
probability density is

t t

P(y,z) = P(yN,...,yI) [I P(YlIY-l,'",Y-N) H P(ZiIyl).
I=N+I 1=1

iAssuming known initial conditions for yl,.• ,yN. In this paper, we use repeatedly

that if f(x) > 0, then of-() = a f(x).

4



The expression for the expected value of the next instance of the time series
(prediction) is

E(yt Iz) = ff(yt-l,., yt-N) PY-, yI-NIZ) dyt-l ... dyt-N. (9)

Similarly the gradient of the likelihood for training can be calculated. For
the special case of Gaussian noise, with z = {z ... zt}

5W cc J(y, - NNu,(yl, -I Y1N)) 19w/=N+I 0t

xP P (yI, . . ., yI-NIz) dyl .. .dyt-N.

4 Approximations

4.1 Approximations of the Solution

In general, if f() is a nonlinear function the equations we obtained for predic-
tion and for calculating the gradient cannot be solved analytically and must be
approximated numerically. We will discuss a solution based on Monte Carlo
sampling. Note that all solutions have the general form f h(u, m)P(ujm)du
where u is the set of unknown variables and M. is the set of known variables.
An integral of this form can be solved by drawing random samples of the
unknown variables following P(ulm). Let ul, ... , us denote these samples.
Then we can approximate

h(u, m)P(ulm)du ý_ h(u',

The problem now reduces to sampling from P(ulrn). Let's first assume that
only one variable is missing. Then the problem reduces to sampling from
a one-variate distribution which can be done using sampling-importance-
resampling or other sampling techniques [1].

If more than one realization is missing the situation becomes more compli-
cated. The reason is that the unknown variables are in general dependent and
we have to draw from the distribution of all unknowns. A general solution
is Gibbs sampling. In Gibbs sampling we initialize the unknown variables
either randomly or better with reasonable initial values. Then we select one
of the unknown variables ui and pick a sample from P(uina, u \ ui) and set ui
to that value. Then we repeat the procedure for the next unknown variables
and so on. Discard the first samples. Then samples are produced with the
correct distribution. This of course means that we might have to sample all
unknowns which ever occurred in the time series. In practice, one would re-
strict the sampling to some reasonable chosen time window. Note, that in the
missing data case, if N consecutive values are known the coupling is broken

5
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Figure 2: Left: Samples of the logistic map. Right: The mean squared error as
a function of K in K-step prediction. The iterated solution (continuous) and
the Monte-Carlo approximation with 3 (dotted) and 20 samples (dashed) are
shown. Only for one-step prediction, the iterated model is optimal. Note, that
by sampling we obtained an estimate of the prediction error of the iterated
system (assuming a correct model).

where we have assumed that K > N. If K < N substitute measured values
for k > K. Note, that simply iterating the model K-times as it is usually
done in K-step prediction is suboptimal in nonlinear time-series prediction
if K > 1!

In our experiments, we wanted to find out to which degree our solutions
are superior to simply iterating the time series in K-step prediction. We used
the noisy logistic map Yt = 4 zt-1(l - zt-1) + ct where

S yt if0_<yt <1
zt Yt - 1 if Yt > 1

Yt + I if Yt < 0

where ct is uncorrelated Gaussian noise with a variance of o-2 = 0.01. Figure 2
(left) shows the time series. Figure 2 (right) shows the mean squared error
as a function of K. Shown are the iterated system (continuous line) and
the solution following our sampling approach. As expected, for K = 1 the
interated solution is optimal, but for K > 1, the Monte-Carlo approximation
even with only few samples is far superior.

6 Extensions

6.1 Error Bars

Sampling provides much more information than just expected values. In all
of the cases considered earlier - missing or noisy data, K-step prediction -
we can also easily obtain error bars of the predicted value by calculating the
variance (or the covariances) in the samples produced (Figure 2).
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fyrO1.:_-1 Ow (Y( n - f(Y 11.- 1, uM-lM))]

P(Yi .... Y) dyl ... dyj

This solution can be approximated using stochastic sampling (see the fol-
lowing discussion). To avoid infinite control actions, it might be useful to
introduce a cost which takes control actions into account or which adds a
penalty for large weights in NNI.

Stochastic Control. Now assume that the control action is stochastic utt
NN, (yt) + 6t and that we allow that the cost depends on the control action.
Then,

aE(cost) •__al/(y,)
11 I.)Y1C (YIu4Z [ * ý (uo,ý - NA7Ut,(yrn))] (12)

Tn=1

xP(yi! . .,Y, uo,.. ., ut- 1 ) dy 1 ... dy 1dul ... dIL-1.

Note, that we do not. need a model of the process f() any more! Tins is
a result of the fact that, we execute stochastic control. The system -tries"
different actions and adapts the controller to favor actions which lead to low
costs. We simply simulate the system (or collect data on the real process) and
execute control actions. In the course of training we might want to reduce the
noise variance on the control to eventually converge to deterministic controls.
Let's assume that we generated S time series of the process by starting at

1 = I and iterating until T generating samples u' and y'. For each experiment
s, we iterate for 2, ... ,T (a' = 0)

a•- 1+7 1-• aNN(Y (y) -NN ,(y'))

and e 1 e_ + C(yI, ul)a•_ . Then aE(cost)/auw R 1/Se>= IeT.

Recurrent Neural Networks. The previous equations also contain an algo-
rithm for training recurrent neural networks. Assume Yt = NN. (yt-1) + ct.
Define C(yt) = 11bt(y' - yt)[H2, -y= 1. Here, Yd is a target at time t and bt is a
vector with bti = 1 if the i-th component of y1 is measured and zero otherwise
(i. e. for the hidden variables). Then

ON N. (yl y- 1) N1a = a'I + ow (yl - NA y

and ec - e_ 1 + b(y - a . Finally, OE(cost)/aw ; E Z= 1 ec"

On-line Adaptation. Consider stochastic control again. We let T -4 no.
We now assume that at every time-step, we start a new experiment s. Then
let a, - •= a' and

a aI = "mal1 +N (y7) (u' - NN. (yl))

9
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1 Abstract

A locally linear approach based on Kohonen self-organizing feature mapping
(SOFM) is proposed for the modeling of non-linear time series. This approach
exploits the neighborhood preserving property of Kohonen feature maps. The key
difference is that the local model fitting is performed directly over a matched
neighborhood of the constructed SOFM neural ficid. The initial results show that
this neural network scenario is an effective approach for local modeling of low
dimensional non-linear processes.

2 INTRODUCTION

Farmer and Sidorowich have used a local approximation for the prediction of
chaotic time series throughout state space. With that approach, the time series is
first embedded in a state space using delay coordinates, and the underlying
nonlinear mapping is inferred by a local approximation using only nearby states.
This approach can be easily extended to higher order local polynomial
approximations. The experiment by Farmer and Sidorowich shows that the linear
model is an effective local approximation, while higher-order polynomials in
higher dimensions are not significantly better than those obtained with first order.
From the point of view of signal processing, the local linear approximation is
derived as a state-dependent AR modeling, by Singer, et al.. This derivation shows
that a single plane through the origin in state space is replaced with state-dependent
approximation planes to account for the non-linear dynamic process. A good
performance is attained at the cost of a large memory and inefficient computation
for both the state space representation and local state search. This problem
becomes worse with longer signal history, although the memory limitation can be
alleviated with dynamical updating of data samples. The inefficient computation
for nearby state search makes the implementation of this approach even harder.
This is due to the fact that such search procedure is performed among the
accumulated signal history without significant structuring.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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Our observation is that the computation in the above scenario can be facilitated
in two ways. First, the signal representation can be streamlined with a vector
quantization procedure. That is, the local model fitting is based on statistically
averaged prototypes instead of the original state vector samples. Secondly, the
nearby state search can be significantly simplified with all prototypes organized
according to a certain metric such as pattern similarity. With a vector quantization
procedure, the model estimation accuracy depends on the compactness of this
prototype set. An optimal representation is found with respect to both the
approximation performance and memory limitation. The beget advantages will
make such local modelling more practical and feasible. Based on the above
observation, we propose for local modeling a neural network vector quantization
representation as an alternative to the state space representation.

3 METHODOLOGY

3.1 NonLinear Processes and Locally Linear
Prediction

Different local prediction approaches were tested by Farmer and Sidorowich,
and Casdagli for a variety of low-dimensional chaotic systems. In this work, we
pursue the locally linear approach, but instead of using the data samples directly,
the local fitting is done over the output of the SOFM neural field.

A given time series x(t) can be embedded in a state space using Takens
approach,

x(t) = [x(t),x(t-T), ... , x(t- (N- 1),r)I

where ' is a delay time. For a given non-linear dynamical system of dimension
D, a minimal requirement is N > D. The predictive relationship between the
current state x(t) and the next value of the time series can then be expressed as [5]

x(t+T) =fT(x(t)) (1)

The problem of predictive modeling is to find the mapping fTf RN to R1. A
local predictor is constructed based on the nearby neighbors of x(t), that is, fitting
a polynomials to the pairs (x(ti), x(ti+T)) with x(tr) being the nearest neighbors of
x(t) for t1<t. The original signal can also be viewed as an evolution of the state x(t)

of a dynamical system in RN

x(t+7) =fT(x(t)) (2)

where fT is the predictive mapping from RN to RN. With simple matrix
operations, fT can be converted tofr Such predictive model concept is illustrated

12



in Fig. 1. The empty circles represent the current state x(t) and its evolution x(t+ 7),
while the solid squares represent the nearby neighbors x(ti) and future evolution
x(ti+7), where ti<t. A simple model estimation is to fit a linear polynomial to pairs
(x(ti), x(ti+T))

•/• •---- X :--) A

Continuous
input space Feature map

Fig. 1 Symbolic illustration Fig. 2 Feature Mapping

of state prediction

From the point of view of signal processing, Singer, et al. [4] derived the
locally linear prediction as an AR model generalization. In discrete time, a non-
linear process can be described by a Nth order difference equations of the form

x (k + 1) = f(x (k)) + u (k) (3)

T
where x(k) = [x(k),x(k-1),...,x(k-N+l)1 ,f(x) represents the

non-linear map from RN to R1 , and u(k) is the white noise innovation term. Due to
the statistical Markov structure of the nonlinear dynamics, we have

P(x(k+l)lx(i),O<i<k) = P(x(k+l)lx(k)) (4)

Based on minimum mean square error criterion, the estimated value of x(k+ 1)
is

1 (k+ 1) = E[x(k+ 1)I x(k)I = E[f(x(k)) +u(k)l (x(k))] = f(x(k))
(5)

Since the realization of the unknown dynamics fix) can be observed from

x(k+1) =f(x(k)) +u(k) (6)

that is, the signal history composes the map from state space of dimension N
to a scalar space, the solution to the estimation of x(k+l) can be solved by

13



interpolatingf(x) from noisy signal samples. Among several methods, as shown by
Singer et al., the local modelling is superior and simpler under the condition that
the given dynamics is locally smooth and a long enough signal history is available.
Therefore the local linear prediction model fitting is implemented as follows. For
the current state x(k), a set of pairs (x(i), x(i+l)) is selected according to the
similarity between x(k) and x(i) where x(i) is one of selected close state space
neighbors and x(i+l) its future value. Thus, the local model approximation
becomes an interpolation problem which can be solved with polynomial fitting.

Following the approach by Singer et al, under the condition thatf(x) is smooth
enough in the vicinity of x(k), fix) can be approximated by the first few terms of
its multidimensional Taylor series expansion,

f(x) =f(x(k)) +VFT(x(k)) (x-x(k)) +...b+aTx = aTx+b
(7)

which is the local linear predictor. The vector and scalar quantities of a and b
are estimated from the selected pairs (x(i), x(i+l)) in the least square sense. To
secure a stable solution, more than N pairs must be selected.

In general, the above local model fitting is composed of two steps: a set of
nearby state searches over the signal history and model parameters fitting. For a
given signal, this procedure results in a set of local model parameters which, when
pieced together, provide a global modeling of the dynamics in state space. Since
the state search is performed over the whole signal history a lot of redundant
computation results which in turn hinders effective implementation of this
approach.

3.2 Localized Signal Representation with SOFM
modeling

Instead of direct sample collection from the signal history, we propose to
alleviate these problems by the use of a Kohonen self-organizing feature map
neural network [7]. The SOFM has very interesting properties for time series
modelling. Let 0, X, A denote the SOFM mapping, input sample space and the
discrete output space respectively. When the network converges to its final stable
state following a successful learning process, it displays four major remarkable
properties:

1. The SOFM map (D is a good approximation to the input space X. This
property is important since it provide a compact representation of the given input
space.

2. The feature map 4 naturally forms a topologically ordered output space
such that the spatial location of a neuron in the lattice corresponds to a particular
domain in input space. The advantage of this feature is that it can simplify local
modeling of the input signal X embedded in the A space.
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3. The feature map D embodies a statistical law. In other words, the input with
more frequent occurrence occupies a larger output domain of the output space A.
This property helps to make the SOFM an optimum codebook of the given input
space.

4. A space dimension reduction is attained via the feature map 4D. That is, the
continuous input space is mapped to a discrete output space with lower dimension.
This property makes the simple architecture of codebook representation feasible.

The straightforward way to take advantage of the above properties for time
series modelling is to create a SOFM from the input signal. Since such feature map
D provides a faithful topologically organized output of the input vectors x E X, the
local model fitting can then be performed over the compact codebook domain A.

The proposed non-linear modelling scenario follows three steps: a.
Reconstruction of the state space from the input signal; b. Embedding the state
space in the neural field; c. Estimation of the locally linear predictors.

a) Reconstruction of the state space from the training signal. Following the

approach by Takens, a sequence of N+1 dimensional state vectors [x(n)T, x(n+t)]T

is created from the given training time series, where

x(n) = [x(n- (N-1)),x(n- (N-2)r), ... , x(n)] T andristhe
appropriate time delay where N_ ŽD and D the dimension of the underlying
dynamical process.

b) Embedding the state space in the neural field. This step is accomplished via
the Kohonen learning process. With each vector-scalar pair [x(n), x(n+])]
presented as the input to the network, the learning process of Kohonen feature

mapping algorithm adaptively discretizes the continuous input space X c RN+ 1

into a set of K disjoint cells A to construct the mapping D: X--4A. This process
continues until the learning rate decreases close to zero and the neighborhood
function covers about one output unit. After learning, a neural field representation
A of the input space X via the constructed mapping relationship 1 is formed in
terms of a set of disjoint units topologically organized in the output space (Figure
2).

c) Estimation of the locally linear predictors. For each element ui = A, its
local linear predictor in terms of [aiT, bi] is estimated based on x. c A, which is a

set of L elements in the neighborhood of u. including ui itself. See Figure 2. Each

T T N+1
element ui, has a corresponding weight vector [wi, W (N + 1)] E R , where

W = [wi(1) i(2) i( . The local prediction model [aiT, bi] is fitted in

the least-square sense to the set of weights in a, i.e.
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=(P+l) b+ j (8)

To ensure a stable solution of the above equations, cti must have more than NI+
elements. TheIeaf"ter for each outnut unit v•cA, there corresponds a unique

linea-hy local model function f(o) in terms of the vector-scalar parameter pair

The global dynamics of the given process can be described by the set of all the
const-7•,ted local models pieced together. For an input state vector x(n)=[x(P-N+l),

r.... -2 •,.9,x(n)]r the matched prototype element ai, e A is found based on the

S07/. competition among all elements in A. The predicted value x(n+l) is
obtained! by evaluating .f(o) at 4~n)=[x(n.-N+l), x(n-N+2),..... x(n)]T

Tx(r+- ) =f(a(o),b(o),i(n)) = b( 0io) +n (Uio)•(n) (9)

L_ a similar manner, a K-step prediction x(n+IK based on -'(n) can also be
obt-,a'ned b, it1aztive prediction, i.e. feeding the output back to the input,

x (P - X) fx fx - I (.f!I (, '(vi.), b (ujio), -ý (n)) (10)

fj = f(o) is the prediction function at step j. That is, the first

prediction generates a new state, which is used to find the new local model
functioo. Evaiuation of the new local model function at the new state produces in
turn a new' prediction until the final K-step prediction. Compared with the direct
pedilction, this recursive prediction has the advantage of higher accuracy [2], [12].

P/,PLiE IT TATJIT AND EKPELR i/EN TTAL
mLUT5

A non-linear time series from the Mackey-Glass system is modeled with the
proposed scenario. A total of 2500 neurons, arranged on a 50 X 50 square lattice,
constitute the SOFM output space. The dimension of the weight vectors wi(n) was
chosean, as 8, so the dimension of the state input during the training process is 9
(117,A). The learning rate and evolution of neighborhood function in eq. (14) and
(15) were used vwith ar=!, b =!0-3, aG=l/ 3 0, b c=.6xl0 4 . A 10,000 samples
Nvackey-Glass time series is generated with d=30 and fs=l/6 Hz. The Kohonen
SOFlM! network is trained with this segment of time series for five epochs (50,000
samples). After training the weight vectors are frozen for local model estimation.
A typical post-training output trajectory corresponding to 400 consecutive input
samles is as shown in Figure 3.



As shown in section 2, to ensure a stable solution in the least square sense, the
subset xi must contain at least N+1 neighbors for stable model estimation. We take
all 21 neurons surrounding the neuron ui in the output space as its neighborhood

subset x. c(A to estimate the corresponding local linear prediction function

fi = f() Another different 5,000 sample Mackey-Glass time series is taken

to test the prediction performance of the estimated local prediction model set. The
testing is performed with multi-step prediction ranging from 1 up to 20 samples
ahead. Iterative prediction (i.e. use the predicted values as new inputs) is applied
for multiple-step prediction. The mean squared error normalized by the variance of
the original signal is shown in Fig. 4, and it starts at .06 and increases to .4 for 30
step ahead prediction.

If the averaged Euclidean distance between weight vectors of two neighboring
neurons is taken as the resolution of the neural field A, it is obvious that the larger
its dimension the finer the resolution, which in turn provides more accurate local
model estimation. With this notion, three SOFM networks with different lattice
dimension (50 X 50, 60 X 60, 70 X 70) are compared in terms of the MSE for 20
step prediction steps and the result is consistent with the above observation as
shown in Fig. 5. The MSE error decreases from 0.22 to 0.18.

50 . . .i

o0 5 10 15 20 25 30 3 40 45 5

Fig. 3 The output trajectory

Finally, Figure 6 shows an autonomous (i.e. the predictor is seeded and then
the output is fed back to its input) 500 point segment of the signal generated by the
local models. This signal clearly shows that the dynamics of the system that
produced the time series have been captured.

17



0.00

0.215F

021L
02

0.10

0.1'3!

11~~ý -2 E201 2 2: 2 7

-, ~. 1teIC O~IT>a ig. 5 FMll vs. N2Ltor'ar Dime~nsion

0 :1 10 IS CI 20 ý) I io

-~ 

-C

0 iOTI o _wo s s aled b lcal mnodels

7J7ýt; Jsh ; 'ha e non, iec dynam-Ics ca: be modleled by a set
-c-s ca-'-o h*c<s fl'C'ed '1:3 the i-mtched- subset of the quantized

S_, Ill a o'-y s acce is built up with the Kohone
sa rnaoo ncumI e7'c± The Q~~ has the advantages of

S",'-; s-),- zepi--m maation of the original time series and sirmple nearby
Sý,P-, S-75C"]I= feat~ure iscnsu-ood, by the neighborhood pr-eserving

'-c-is th- md11' C02cou0s liece of the lea-ninnr la-w. 'With this spatial
ah- t'mlace mooiUl frttino can be ner-foame:ýd directil; over the matched
es- : n- 3 on .7 t 1 P, neralrqjd Shica ' 1loal1 inform-ation is e;:,- ýaclted directly

18



from the neural field, this scenario represents a further in-depth exploration of the
Kohonen feature mapping.

The Kohonen feature map has been used by Walter, et al. for similar purposes.
However, the topologically ordering relationship intrinsic in the construction of the
neural field was not explored in their approach. Instead the desired local models
were adaptively constructed during the network training process. The topologically
organized weight vectors only served for state searching.

The experimental results demonstrate that this Kohonen SOFM scenario is
feasible as an effective approach for non-linear dynamical modeling. We are
presently comparing this approach with others using dynamic neural networks (i.e.
multilayer perceptrons extended with short term memory mechanisms) [12]. One
advantage of the SOFM is the creation of states that can be explored for the
prediction of time varying nonlinear signals.
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ABSTRACT. We describe certain recent results of the first author
concerning the approximation capabilities of neural networks with
one hidden layer. In particular, these results demonstrate the con-
struction of neural networks evaluating a squashing function or a
radial basis function for optimal approximation of the Sobolev spaces.
We also report on our joint work, where some of the first author's
earlier ideas are applied to construct general purpose networks for
the prediction of time series, when the number of independent vari-
ables is known in advance, such as the Mackey- Glass series or thc
flour data.

1. INTRODUCTION

One of the major applications of neural networks is to approximate a func-
tion of several variables. In fact, it is well known that any neural network
training can be thought of as function approximation. A typical example is
the prediction of time series, where it is desired to predict the observation xt
at time t as a function of the s previous observations xt - 1, ,xt-s, where s
is a fixed positive integer.

There are two major problems which arise in this theory. One is to
determine the number of neurons necessary to achieve the approximation
of the target function within a given margin of tolerance. The other is to
develop algorithms to actually construct the approximating networks.

Although the target function is usually unknown, it is customary to as-
sume that it belongs to some known class of functions. A common assumption
is that the function has a certain number, r, of continuous derivatives on the
domain where the approximation is desired. The complexity problem is the
problem of determining the number of neurons required to approximate any
such function in terms of the desired accuracy, the number of independent
variables on which the function depends, and the size of the derivatives as
measured by a suitable norm. Equivalently, the problem is to determine how
much accuracy one can achieve in the approximation of any function in this
class with a given number of neurons. Section 2 of this paper describes some
of the recent work of the first author in this direction.

In designing algorithms for the construction of networks, one may or
may not be able to sample the function at prescribed points. The proofs of
the results described in Section 2 also give a training method in the case the
function may be sampled at prescribed points. In Section 3, we use some
of the earlier ideas of the first author [10] for "universal" approximation of

0-7803-2739-X/95 $4.00 © 1995 IEEE

21



functions, where such a sainplhng is not possible. We do need to assume that
the number of variables, on which the function depends, is known in advance.

Our research was supported, in part, by grants from AFOSR and NSF.
We are also grateful to F. Girosi, j. Larsen, J. A. Sorensen and T. Poggio for
their kind encouragement.

2. T1EZORETICAL RESULTS
in [8. 18], Girosi, Poggio and Jones have introduced the notion of a gen eralized
tnTYslatio? neu/work (generalized regalarizalion nelwork in their termriinology).
Let i < d < s, a > I be integers, ý : -d -.R A generalized translation

network ;ith a neaarovs (principal elements) evaluates a function of the form

=a,ýo(A,(.) + bQ) where the A4,cs are d x s real matrices, bk. E R" and
<l; E R ( , case d I 1, we have the usual neural networks

with c as the activation function. In the case d = s, we recover the traditional
radial basis function (RBF) networks, where, in the most traditional setting,
the matrices Ak are required to be all equal to the identity matrix. Girosi,
Poggio and Jones have demonstrated in [8, 18] how the generalized translation
net works arise naturally in applications such as image processing and graphics
as solutions of certain extremal problems.

Motivated (in part) by this work, Mhaskar and Micchelli [14] carried
out an in-depth investigation of the approximation capabilities of the gener-
alized translation networks. Under very general conditions on o, they have
constructed networks that approximate an arbitrary function in the L7 or
uniform_ norm, and illustrated how the smoothness and growth of 0 affect the
degree of approximation of the target function. The networks constructed
in [14] are also capable of providing simultaneous approximation of the tar-
get function and its derivatives, tinder minimal conditions on 0. The main
thrust of [14] is to study what properties of (D have what effect on the de-
gree of approximation; in particular, to gain an insight on how to choose an
activation function, rather than to obtain the best estimates. A preliminary
announcement of some of the results in [14] was made in [15].

In order to discuss the complexity problem further, we need to introduce
some notation. For the sake of simplicity of exposition, we restrict ourselves
to uniform approximation on [0, 1]'. Thus, for f [0, 1]i - R we write

JIlJ := sup f()l. (2.1)
lEt0,!]>

The class of all the output functions of a generalized translation network with
n neurons, each evaluating the activation function 0 and receiving s inputs,
vwill be denoted by Ill;.... We measure the degree of approxitationt of f by
the expression

E,;,.(f) := inf{Jlf - P P p1 .... }. (2.2)

For integer r > 1, the class of all functions f : [0, 1] -+ R having r con-
tinuous derivatives on [0. 1I' will be denoted by IV,,. For a multi-integer
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k = (kl,..., k,) E ZV, the notation 0 < k < r means that 0 < kj : r for
I < j < s and we write IkI = Ek=, Ikj . If f G W,,,, its Sobolev norm is
defined by

Ilfllw•,, 1D IDkfII (2.3)
O<k<r

where the partial derivatives Dkf are defined by

Dkf ._ 0lklf

Since the target function is usually unknown, the quantity of interest in this
theory is

Eo;nrs ... supE;(f) : _<111W K 1}. (2.4)

We observe that any function in Wrs can be normalized so that [If wr,_ <
1. Hence, Eo;n,r,s measures the "worst case" degree of approximation by
generalized translation networks with n neurons under the assumption that
f E Wr,s and is properly normalized.

There are general theorems in approximation theory due to DeVore,
Howard and Micchelli [6] which indicate that E;n,,, must be at least of the
order n-,Jr. This order was achieved in [10] using networks with multiple
hidden layers. However, it is shown in [4] that these methods cannot work
for networks with one hidden layer. It was conjectured in [11] that EO;,,rs
cannot be O(n-,Jr) at least in the usual neural network setting, where d = 1
and 0 is a sigmoidal activation function.

The following theorem due to the first author [12] disproves this con-
jecture, and describes certain conditions under which the optimal order of
approximation can be realized, in fact, for generalized translation networks
with a single hidden layer.

THEOREM 2.1. Let I < d < s, r > 1, n > 1 be integers, :Rd - R be
infinitely many times continuously differentiable in some open sphere in Rd.

We further assume that there exists b in this sphere such that

Dk (b) # 0, k E Zd, k> 0. (2.5)

Then there exist d x s matrices {Aj }>=1 and a positive constant c depending
at most on 0, r and s, but independent of n, with the following property. For
any f C Wr,,, there exist coefficients aj(f) such that

n

If - 5 aj(f)O(Aj(.) + b)l1 _< cn-r'llflwr,. (2.6)
j=1

The functionals aj are continuous linear functionals on Wr,,.
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Some of the important examples where (2.5) is satisfied are the following,
d

where for x E -d,, we write IxI := •_•x) 1/2: the squashing function, where
j=1

d 1= , 0(x) := (1 + -x)-', the generalized multiquadrics, where d > 1
and o(x) := (1 + x12)& , (a • Z), thin plate splines, where d > i, and with

q e Z, q > ci/2,

Ix2-d ,log xK, d even,
O(X) = xI 2

d ' d odd,

and the Gaussian function, where d > 1, 6(x) := exp(-Ix1 2).
A remarkable feature of Theorem 2.1 is that the matrices Aj and the

threshold b are determined independent of the target function. The deter-
mination of these quantities is typically a major problem in most network
training algorithms such as backpropagation. In fact, the proof of Theo-
rern 2.1 does not depend upon any optimization at all, so that none of the
usual problems in network training, such as local minima, arise. The proof
also gives an explicit formula for the functionals aj(f), thus reducing the
"training" to a simple evaluation of linear functionals.

For functions which are analytic in a (complex) ellipsoid containing
[0, i1', the method of the proof gives dimension independent bounds, allowing
a geometric rate of approximation. The analyticity condition is substantially
stronger than the more well known conditions of Barron [1], but the geomet-
ric rate of convergence is also substantially stronger than that obtained in
[1]. Moreover, it is a local condition.

Dimension independent bounds under a different set of local conditions
are studied in [13]. It is worthwhile to remark in this connection that the

Daper f14] studies the construction of networks which provide an -optimal
recovery" of a class of functions, based on the number of observations on the
target function, rather than the number of neurons.

3. AN, ALGOROTPT-T.. FOR ADAPTIVE APPROXIMATION

The networks described in the proofs of the results in Section 2 require that
on( should be able to sample the target function at prescribed points, with-
out noise. In this section, we describe an algorithm which does not require
these assumptions. The basic idea is the fact (cf. [10]) that it is possible to
approximate the characteristic function of an s-dimensional cube arbitrarily
closely usiug a neural network with a fixed (dependent only on s) number of
neurons, each evaluating a bounded sigrnoidal activation function, arranged
in nto hidden layers. In this section, we describe an algorithm which will pro-
vide ain adaptive app)roximation to a target function f on [0, 1]' by choosing
a ult•ble partition of the cube.

T'he algorithm in Fig. 1 is a very simple adaptation of some of the ideas
iR. DM ore's lecture [5]. The starting point of the algorithm is the treeming

dci•, aT, which is organized as an array of (s+l)-tuples (x. y) where Yt E [0, 1]'
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and y is the value of the target function f. At the culmination of this
algorithm, the cube [0, 1]' is partitioned into subcubes and the approximation
of the target function is the function g that takes a constant value on each of
these subcubes. The accuracy of this approximation is measured by a suitable
functional E(T) of the training data, such as the root-mean squared error.
During the algorithm, the subcubes are organized in a tree structure. The
root of the tree is [0, 1]', and the children of a node are the 2' partitioning
subcubes of that node obtained by halving each side of the node. For each
node Q, SQ denotes the set of observations (x,1y) such that x E Q; YQ is the
value of g on Q.

1. Let " := {[0,1]}, S {(xtyi)}.
2. Q := [0, 1]3, YQ := y, E(S) := 0.
3. while there is more training data, do begin
4. while ((E(S) < c) and (ISQ1 _< P)) do begin
5. Read next (x, y) and add it to the set S.
6. Find the smallest subcube Q E A" such that x c Q.
7. Set ZQ := (FSQI1Q + Y)/(ISQI + 1).
8. Calculate E(S) using g(x) := zQ for x E Q.
9. end {Straightforward processing, go to line 4.}
10. while ((E(S) > c) or (ISQI < P)) do begin
11. Split Q into 2' equal subcubes.
12. For each subcube C of Q do
13. If Sc is empty, set Pc := yQ.
14. Otherwise, recalculate Pc.
15. Add C to II.
16. end {subcube processing}
17. Rename the subcube containing x as Q.
18. Calculate E(S).
19. end {Bringing the error within margin, go to 10}.
20.end { Outer while, go to 3 for more data}

Fig. 1.
Partitioning algorithm

To start with, the tree consists of the root alone. Given any tree, we keep
on accumulating the data such that the x values fall on a leaf of this tree.
The value of g on each leaf is simply the average of the y values corresponding
to the x values falling on that leaf. This process continues until the error
functional for the partition becomes unacceptably large, or until a single node
accumulates too many x values; thus indicating that a more refined analysis
is required. At this point, the node is split into its children and the data is
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redistributed. If there are-no x values on any of the new leaves, the value of
y on these leaves is the same as that on their parent, before the parent was
split. This splitting continues until the error functional for the training data
encountered so far is satisfactory. The process stops when the training data
is finished and the error functional E(T) is satisfactory.

If the target function is continuous, then this process is guaranteed to
stop after a sufficient amount of training data is analyzed. Thus, the algo-
rithm provides universal approximalhoa. It can be easily modified to incorpo-
rate spline functions of order higher than 0. This is expected to significantly
enhance the performance of the algorithm, albeit at some computational cost.

There are many algorithms in the literature for adaptive approximation,
which are perhaps better than our algorithm in many ways. The main inter-
esting feature of our algorithm, in addition to its simplicity, is that it does
not seek to solve any ianimization problem. For example, at each stage of
the recursive partitioning algorithm, (CART for regression) [7, p. 11], [9, p.
231], the domain and the sampling data are split so as to minimize a vari-
ance. In the MARS algorithm, [7, p. 17], the nodes and the coefficients of
the approximating spline are chosen at each stage to minimize a "lack-of-fit"
functional. In the k-NN algorithm, one has to search in the sample space to
find the k argument values which are closest, i.e., minimize a distance func-
tional, to the given argument value. Our algorithm does not require any such
minimization. The resulting error is therefore not optimal, but is still under
control. In fact, the algorithm guarantees that the error does not exceed a
preset tolerance. We have not done any pruning as suggested in [2, 7]. The
numnber of subcubes, and hence the number of neurons is typically substan-
tially large. In the case of the algorithm of Fig. 1, pruning could have been
accomplished easily. One Just combines all the neighboring subcubes having
the same predicted value into one subregion. However, since our algorithm
is so simple, and the combined subcubes might not give a cube, it was not
thought worthwhile to prune the tree. Finally, we observe that the resulting
neural network provides localized approximation in the sense of [4].

Although our main interest was only to check how the ideas of [10] can
be implemented in practice, rather than to solve any particular problem,
we tried the algorithm to solve two time series prediction problems. The
Mackey-Glass time series, studied recently by Plutowski, et. al. [17] and
Platt [16], is a four variable problem. We set the training RNIS at 0.001,
trained on 400 samples and predicted the next 100 samples. The net RMS
error (on the test data) was 0.0026 (Fig. 2). This required 279 cubes at the
end of the training. The test phase required an addition of 40 cubes, which
was done very easily. When we trained on 500 examples, and predicted the
next 500 data, the net RMS (on the test data) was 0.0022 (Fig. 3). At the
end of the training, there were 300 subcubes, the test phase required 131 new
subcubes. We also analyzed the flour data studied recently by Chakraborty
et. al. [3]. As in [3], we trained on 90 samples and predicted the next 10.
The training RMS was preset at 0.25. In separate modelling (a two variable
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problem), we obtained an RMS of 0.0028, 0.0028 and 0.0014 for the three

cities (Fig. 4 shows the graph for Buffalo). In combined modelling (a six

variable problem), the numbers were respectively 0.0043, 0.0038 and 0.0040.

This is a substantial improvement on the results quoted in [3]; indicating
that the target function must be very smooth.
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FIGURE 3. Mackey-Glass Series; - predicted, ... actual
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The basic object of interest in neural network modeling is the conditional
input-output distribution p(ylx), i.e., the probability distribution of the out-
put conditioned on a test input vector, see e.g., [16]. Normally the network is
trained to implement the conditional mean2 , E{ylx} = fy .p(ylx) dy. The
first source of uncertainty is the inherent prediction error c = y - E{ylx}
which - per definition - cannot be modeled. Another considerable source of
uncertainty is the estimation of E{ylx} from a limited number of training
data.

This paper deals with empirical assessment of model quality expressed in
terms of generalization performance defined as prediction accuracy on future
data. Reliable estimates of the generalization performance of a particular
model is very important for practical applications. Moreover, in order to
choose the best model from a pool of candidate model architectures3, one
requires a test which determines if a particular model has a significantly
higher generalization performance than a competing model. The empirical
framework enables both absolute and comparative generalization assessment.

The generalization performance can be decomposed into three compo-
nents, see e.g., [3], [6]. The first term is due to the inherent prediction error,
E. The second term expresses the insufficiency of the neural architecture 4

to model the conditional mean, and is often referred to as the model bias.
Finally, the third term reflects finite training set effects, also known as the
model variance. While the first term - per definition - cannot be decreased,
there will normally exist a trade off between bias and variance which is ac-
complished by optimizing the architecture, e.g., by using pruning techniques.

ON GENERALIZATION PERFORMANCE

Suppose the network is trained by minimizing a cost function, viz. the sum
of a loss function, SN(w), and a regularization term R(w), i.e.,

IN

CN(W) = SN(w) + R(w) = N Z e (y(k), g(k); w) + R(w) (1)
k=1

where t(.) measures the distance between the output y(k) and the network
prediction j(k) = f (x(k); w). Even though much of the material in this paper
applies for general loss functions, often the mean square error loss function,
f = (y - e2 is considered. N defines the number of training examples,N

i.e., input-output pairs of the training set: D (xP(k), y=(k))}k=1
Training on the full set of examples provides the estimated weight vector

iv = arg minv CN(w). The generalization error, G, is defined as the expected
2This is optimal when using a mean square error cost function, see e.g., [163.3E.g., feed-forward neural nets with different input lag-space and number of hidden

units.4The architecture is presumed to be finite, i.e., the weight vector is finite dimensional.
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loss of the estimated model oil a test sample (X, y) independent of those in
the training set,

G (o) = E ((y, ý'; = (p ý; i) p(x, y) dX c/ (2)

where E{.} denotes expectation w.r.t. the unknown joint input-output proba-
bility density p(e :y). G(•) depends on the actual training set D through the
estimated weights iv and has the lower bound Gi,, - G(w*). w* denotes the
optimal weight vector w' = arg min. E{Cv(w)} = arg min. [G(w) + R(w)]
which corresponds to training on an infinite training set. Under fairly mild
assumptions, it is possible to show limrv-+ , i = w*, see e.g., [10], [11],
171-. GnI)i expresses the fundamental uncertainty of y when xc is known, and

furthermore the potential lack of modeling capability, i.e., the network is inca-
pable of implementing the optimal5 function, ,q(X) " arg rminQ(,) E{f(y, p5(x))},
0('() : 1'L •+ R. Insufficient modeling capability is due to two facts:

" In general, when using a finite architecture the model is incomplete, i.e.,
f (* w')) #4 .(x) where w° = arg inii, G(w) is the weights minimizing
the expected loss using the architecture embodied by f(.).

" Regularization implies that the optimal weight vector w* does not equal
w': even when using a complete model.

Since the A' samples in 9 are randomly selected from the joint density
1)((xr(]-), y(l)). .. , (x(N), y(N))) the generalization error G(Bt) is stochastic
vwith a certain Qeneralization e1rcor probability distr'ibutio',
P(G) = Probh{G(i) < C)} and associated density p(G).

The object of interest for model design could be either the frill general-
ization distribution or just the generalization error G(Qf) on the particular
training set available. These cases are treated separately in the following.
If one has a strong belief in the trainig set (e.g., if it is large) one might

atddlress G(ý'v). Otherwise, it might be better to consider the training set as a
typical set drawn randomly from the joint input-output distribution in order
to reveal the generic characteristics of the employed model.

Since p(G) depends on the true distribution of data, the iiodel architec-
ture, and the number of training data, it is impossible to fully characterize it.
However, it is possible to give some general properties. Obviouslv, p(G) = 0
as G < G,,,,. For finite training sets, p(G) will have non-zero values for
G > Gmt, and since liny ,iý = w*, p(G) tends to a Dirac delta function
t)(G - G.i,,) for N --s cc. If the model is complete, the loss function is the
mean square error and no regularization is employed, it is possible to show6

asvmnitoticallv as N -- c-., G(Q) _ (72(1 + X2 (p)/N) where o72 is the predic-
tion errot noise variance and 2V(p) is the V2-distrihutioni with p =- dim(zu)
degrees of freedom.

`V t'h o respect to the employed loss function.
T;,z, is done bY using second order exp)ansions of G(w) around w*, and the fact that

that th' fluctuations ,w - w- are asymptotically Gaussian distributed. See e.g., [GI,

i[ d [16]3
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The literature on generalization theory and estimation of generalization
error does not in general address the problem of characterizing the full pre-
diction risk probability density. Most work has focused on simple measures
of location such as the average generalization error

avr(G) = E-D {G(iý)} = J G . p(G) dG. (3)

This includes algebraic estimators like FPE [1], FPER [7], GEN [5], GPE
[9] and NIC [10] which are valid asymptotically N -* oo and make several
assumptions on the model and statistics of the data. However, also algebraic
estimates of fractiles of p(G) have been developed, see e.g., [14], [15]. Thus
the 1 - ca fractile G 1l, defined by Prob{G < Gp-,} = 1 - a guarantees
that the probability of G exceeding G 1 ,- is a, which can be set to some low

percentage.

EMPIRICAL GENERALIZATION ERROR ESTIMATION

If the object of interest is the generalization error G(Q-) for the particular
training set available, we consider the hold-out cross-validation technique [13]
for estimating G(Q). Suppose that a cross-validation set C of N, = [NT] 7

0 < -y < 1, samples are hold out for cross-validation and denote by T the
remaining Nt = N - N, data for training, i.e., let iv = argmin,, CN, (w).
The cross-validation estimate of G(iS) then reads:

1 G~ff) = ~c •• gy~k)•(h)•v)(4)

Under suitable regularity conditions, G(iS) --* G(iS) as N, -- oo. However, a
very large cross-validation set leaves only few data for training thus increasing
G(ib). Obviously, there exists an optimal fraction -y which trades off the
conflicting aims. Assume that the quality of the cross-validation estimator is
measured by

MSE(-y) = ED G(i } (5)

where ED{.} is the expectation w.r.t. all training data. Further, assume that
the loss is the mean square error and that the training data are independent.
Since Ec{G(iS)} = G(iS) evaluating Eq. (5) gives

MSE(-y) = ET { [Ec {e
4

(i,)} - G
2

(iV)] (6)

Using asymptotic expansions (see e.g., [6],[7]) for the terms in Eq. (6) and
considering the model to be complete, it is possible to show that the the

7 [.] denotes rounding upwards to the nearest integer.
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optimal fraction is given by I-t = 1- V-1/N where 0 4pu1/(1-c), ý is the
kurtosis of the inherent noise (equal to 3 for Gaussian noise), andi p = dim(w).
That is, lim y ?o = 1 while N1 = O( N(3) and N, = O(N - NV)
asymptotically. It should be emphasized that the choice of -' for a finite small
NV still needs to be tuned by hand.

The hold-out cross-validation scheme can also be used for comparing gen-
eralization errors of different models. Consider the scenario of pruning a
nested family of neural net models and suppose that two alternative mod-
els with weights v , i'-, both are estimated from T. If we take w'2 to be
a subset of fvl, i.e., dim(w2) < dim(wj), the hypothesis to be tested is:

G(iV2 ) > G(il). Since the models are nested and estimated from the same
training set, the corresponding generalization errors are highly dependent.
A straight forward procedure which puts error bars on the individual gen-
eralization error estimates may fail to unveil the superiority of one model
relative to another. The dependence is easily taken into account by ana-
lyzing the difference in generalization error, AG = G(i'2 ) - C(ff 1 ). Ac-
cording to the central limit theorem' AG tends to a Gaussian distribu-
tion as N, -- c,. That is a standard t-test for the hypothesis can be
used. If AG/std(AG) < t,(NV• - 1) we reject the hypothesis on an a
significance level. t,(N\% - 1) is the a-fractile of the t-distribution with
.V, - 1 degrees of freedom, and std(.) denotes the standard deviation. Define
AC2 (k') = e2 (k, WQ) - eC (k, ffv1 ) then the standard deviation is estimated via
(std(AG_.k)) 2 = (N\ _ 1)- 1IY- re.c(Ae 2 (k) - Ad)2 .

EMPIRICAL GENERALIZATION ERROR DISTRIBUTIONS

We suggest to estimate the generalization error distribution by using leave-
out cross-validation [12], [13] and resampling techniques. The basic algorithm
is given by:

1. Specify the leave-out fraction y/ and determine N, = fNlY]. Further
specify the number of resamplings J < N!/NJ!(N - N,)!.

2. For j = 1. 2. - , J split the training set randomly into a cross-validation
subset, Cj, and a training set, Tj = 'D \ Cj not used previously'.

3. Train on T7 with Nt = N - Nc examples to obtain the weight estimate
iýj and calculate the empirical mean of the loss on the samples Cj,
which yields the generalization error estimate:

-j = Gj (i5j) = -E Z (y(k), y'(k); ii). (7)
NkEgj

The training in step 3 can be very time consuming and in [4] we developed
an approximate technique for leave-one-out cross-validation.

st hiis also applies when the error signal is a strongly mixing sequence (time-dependent).

'Note that this is resampling without replacement, as opposed to the Bootstrap
technique.
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Ideally, when estimating Eq. (7) we should train and test on independent
sets. Moreover, the training sets should be independent. These properties
only hold approximately. First, it is very important to stress the significance
leaving out a fraction -y compared to the standard approach of leaving out
a fixed number. In the latter case, the different training sets will be too
dependent even in the limit of N -- oc°. However, as discussed in the
previous section by letting 7 -* 1 and if Nt = O(vlog(N)), N, = O(N -

v log(N)), where 1, is a constant, all moments of Gj converges". The number
of resamplings J should also be allowed to increase towards infinity as N
grows. Secondly, for most signal processing problems, time-dependence can
especially for small N cause noise in the estimates. However, asymptotically
this is no problem since we expect the input signal to be a strongly mixing
sequence, i.e., the time-dependence vanishes for large lags.

From the estimates Gj in Eq. (7) it is possible to form the empirical
generalization error distribution

J

Pemp(G) (G - (j) (8)
j=1

where G(1) < 0(2) ... G(j) is the sample order statistics, andp(G-G(j))
1 when G > G(j), and zero otherwise.

Since p(G) ishighly non-Gaussian and long tailed (which is demonstrated
experimentally below), the mean and variance are not sufficient for charac-
terizing the shape of p(G). It may consequently be desirable to consider more
robust location and dispersion measures which we are able to calculate with
Perp(G) in hand. In general the location of p(G) delivers an estimate of
the level of generalization error. The dispersion conveys the fluctuation in
generalization error and might suggest if the current number of examples is
sufficient for learning the task properly. We consider the following quantities:
Location:

"* The average avr(G) = f Gp(G) dG.

" The trimmed average tavr(G) = f " Gp(G) dG which reflects the
average in which the highest and lowest 5% of the data are excluded.

"* The median med(G) equal to the a = 50% fractile G5o%.

Dispersion:

"* The standard deviation std(G) = (f[G - avr(G)]2 dG)1 /2 .
"* The median absolute deviation mad(G) = med( IG - med(G)j).
"* The interquartile range iqr(G) = G75% - G 2 5 %.

iOThis is discussed in the literature of the so-called Jackknife estimators, see e.g., [2],

[11, Ch. 5.7]
1iThis is a generalization of what was stated in the previous section for convergence of

the second order moment in Eq. (5).
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DPe to theo fact that •)(G) follows a X 2 like distribution, we might consider
a scrntio0 of G ill order to make it more well behaved. In the general
±cb, h: of Box-Cox transformations (see e.g., [11, Ch. 2.8]) we foundc that a

snita !)! transl o1mat, 1012 is 6C = log(1 + G).
As il the previous section it is possible to compare the genieralizatiiol

al ilty e.g, b comlparihg estimated average generalization errors for two
a oles descri rwhe1 by a), cc. Define the associated estimates 73C(G)1 =

t C G (gij), J = 1, 2. and the difference AŽ3 (G) -77(C)-h7(Cj).
For i 1IrA,.(C) tends to a Gaussian distribution by the central lhnit
teore1 , staoduard deviation g-iven lI)v

s/,d(AK7>c C6)) \(I-1d [0,2/ -
0 uj - Aa '( - (0)

j jAl

Here the individual differeces are assumed to be independent. A standard
t-test (as described previously) can then he applied.

S TjvXZtf CAL E- AMPLES

Cosidei the following da'.ta generating system: ij(A-) = T(/,)T +±(k). x (k)
follom, 2" f = 10 x late Ganssian distribution -(0 7) with 117 chosen its
a r p defielino symmetric matrix. £(/,!) is time-dependent: each
co-:'onent is P first ordoe AR-process with coefficient 0.6518 scaled to give

ft 1 variance, tLius imoienienting a low-pass filter xith iemory iength ap)rox.
10 71. TIha- oois /) .A"(0, 72) is ii.d. and independent of xr(k). The

-v..di-ts, w° were chosen independently from a A,"(0, 1) distribution.
W 2e Qc-i- C = 30000 independent training sets of size IV = 20 anti

t- e wit a p = 10 diclensional linear model using the mean square er-
rcr cost (withont reglarization) to obtain the estimates 3('), / e [1: Q)].
T'-is enables a highly accurate estimate of the considered generalization per-

f'oalna measures. Asa n example, the "tciue" average generalization er-

z-cc is calculated by a e(G) Q Q G (&i ) xhere C( = -2

C-,.. "v°) -. /w -7v 0 ). For q = 500 of tie (Q = 30000 training sets
-apphied the leave-out proceclure with -y = 0.25, J = 500 to obtain thl

h s-imates 5 to9. and corresponding generalization error estimlates Gj
1: 0ýo comparison we caleulateed the FPE [1] estimate of occ(G) 1w

FPE(•) o W G,(() _ + M)/(N:-7)

Fig. I shaows the obtained generalization error prohal)ility distributions.
Inaie 1 shovs a comparison of the suggested measures of location and clisper-
sion. Ve coinsider the transfornaed variables C which experimentallv showxe
0i t0he performance significantly oxer G. The table indicates that the

proroe leave-out technicue is fairly accurate for estimating the location and

i- i G = 01 for ( =0.
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Probability Distributions, p=10, N=20 True Probability Density, p=10, N=20
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Figure 1: Left panel: True (solid) and empirical generalization error distributions
as a function of G = log(1 + G). The dashed line indicates the median distribution
of q = 500 obtained by leave-out cross-validation while the dotted lines denote the
25% and 75% fractiles. The vertical dashed line is the lower bound log(1 + 0,).
Right panel: True generalization error density p(G) estimated from Q = 30000
replications. The vertical dashed line is the lower bound ca2 = 32.45. The vertical
solid line denotes the average, and the vertical dotted the median. Note that p(G)
is highly non-Gaussian and long-tailed (ranges to G = 1000 approx.). This implies
that the classical measure of location, viz. the average overestimates the typical
(the mode) generalization error.

dispersion measures even though the number of training data is only twice
as large as the number of weights. Definitely, the leave-out method outper-
forms the classical FPE estimate at the expense of increased computational
complexity. However, the framework offers the possibility of estimating other
quantities which are not possible in the asymptotic framework on which FPE
relies.

We considered furthermore the comparison of two competing linear mod-
els: w, with dimension P, = 10, and w 2 with dimension P2 = 9 which conse-
quently is an incomplete model of the true data generating system. The true
difference in average generalization ability Aavr(G) is positive thus indicat-
ing that one should prefer model I over model 2. Using the same simulation
setup as described above the t-test on a specified o = 5% significance level
resulted in that the hypothesis fails to be accepted in approx. 30% of the
cases. More over we considered estimating Prob(G2 > GI) from the empiri-
cal distributions. It turned out that the estimate tend to under estimate the
probability by 20%. Further, it is somewhat more robust than the estimates
of the location measures of the generalization error difference.

14When considering C the FPE estimate becomes: log(1 + oQ) + op/(1 + o0-)N with2 SN(Z)/(N - p).
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tioils 1e'e-tI eu0= 00 replications. Ini median the location measures avG)
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rlmmý' thiir tersimate of e ei-(C) obtained byv FPE. Ndoreot in the fluctuations are
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irPsac"1-ig ThnIe majo ]O' -ng is ohat the framework provides insight, into
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NtOen l ocatrion ani-, dispcersion meastures. Traditionallv. only the average
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Abstract

We describe a principled strategy to sample functions optimally for
function approximation tasks. The strategy works within a Bayesian
framework and uses ideas from optimal experiment design to evaluate
the potential utility of new data points. We consider an application
of this general framework for active learning the weight coefficients
of a Gaussian Radial Basis Function (RBF) network. We also derive
some sufficiency conditions on the learning problem for which there are
analytical solutions to the data sampling procedure.

1 TIntLCoductionI

fi most classical formulations of learning from examples, the data (examples)
are assumed to be randomly drawn and presented to the learner. This is the
case for a variety of situations ranging from network models (Rurnelhart et.
al. [5], Poggio and Girosi [4]), PAC (Valiant [8]) frameworks, and classical
pattern recognition. In this sense, the learner is a passive recipient of informa-
tion about the target function. In contrast, one could consider a learner that
plays a more active role in collecting its examples. By judiciously selecting
examples instead of allowing for possible random sampling, active learning
techniques can conceivably have faster learning rates and better approxima-
tion results than passive learning methods.

Using ideas from Optimal Experiment Design (Fedorov [2]), we have, in
an earlier work (Sting and Niyogi [7]) formulated a general procedure for
sampling an unknown target function at points in its domain. In this paper,
we consider an application of this general framework to encompass the active
learning of the coefficients of a Radial Basis Function (RBF) network (Poggio
and Girosi [4]). More generally, our solution allows us to handle parameter
estimation problems for function classes that are linear in their parameters.
In this paper, our contributions are:

i. The application of an Optimal Experiment Design frarnework for es-
timating the weights of RBF-type function classes, and the analytical
derivation of an optimal sampling strategy for parameter estimation of
such classes from data. This represents a significant improvement over
existing work on toy function classes, like step functions considered in

0-7803-2739-X/95 $4.00 © 1995 IEEE
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(Sung and Niyogi [7]). Recently, Sollich [6] has applied a similar opti-
mal experiment design framework for estimating the weights of a single
perceptron unit. To the best of our knowledge, this analysis has not
been done before on RBF-type networks.

2. Empirical comparisons of the data requirements for active and passive
learning of RBF-type function classes.

3. Development of sufficiency conditions on the learning problem for which
an active data selection sequence can be analytically derived and pre-
computed within our optimal experiment design framework.

We now provide a brief statement of our problem, our solution for the active
sampling strategy, and a glimpse of the empirical simulations.

2 The General Formulation

We adopt a Bayesian formulation for active example selection. Specifically,
we can pose the problem as follows: Let D, = {(xi, yi)Ii = 1, . . ., n•} be a set
of n data points sampled from an unknown target function, gt, possibly in the
presence of noise. Given a class of approximation functions, Y, where each
f E .7 has prior probability P.y(f), one can use regularization techniques to
approximate gt from D, (in a MAP sense) by means of a function 0 E F. We
want a strategy to determine at what input location one should sample the
next data point, (x,+1, yn+i), in order to obtain the "best" possible Bayes
optimal approximation of the unknown target function gt with our concept
class .,

We approach the active example selection problem in two stages:

1. Define the notion of a "best" possible Maximum A-Posteriori
(MAP) approximation for an unknown target function. We
propose an optimality criterion for evaluating how well a solution ap-
proximates an unknown target function. Our active learning goal is
to find a solution g G T that best approximates the unknown target
function in terms of the optimality criterion.

2. Formalize mathematically the task of determining the best
input location to sample next. We express the active learning opti-
mality criterion as a cost function to be minimized. The task of choosing
the next data point becomes one of minimizing the cost function with
respect to the next sample's input location.

Earlier work by Cohn [1] and MacKay [3] have tried using similar opti-
mal experiment design techniques [2] to collect data that maximizes infor-
mation about an unknown target function. Our work differs from theirs in
two respects. First, we use a different, and perhaps more general, optimality
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criterion for evaluating solutions to an unknown target function, based on
a measure of function uncertainty that incorporates both bias and variance
components of the total output generalization error. In contrast, MacKay and
Cohn consider only the variance component in model parameter space. Sec-
ond, we also show that our active example selection strategy requires fewer
training examples than passive methods to learn a target function to a given
degree of accuracy.

2.1 The Formulation

we begin by establishing an optimality criterion for measuring the quality
of an approximation function with respect to an unknown target. Recall
that our active learning goal is to find solutions that best approximate an
unknown target according to our proposed optimality criterion. From the
optimality criterion, we can derive a scheme for measuring a new example's
utility in terms of how well the example steers the learner toward the goal,
and an accompanying computational procedure for selecting the next training
example.

Let gt be a target function that we want to estimate by means of an
approximation function 3 7 .7. If the target function gt were known, then one
popular measure of how well (or badly) j approximates gt is their Integrated
Squared Difference (ISD) over an appropriate region of interest ,X:

6(0, g) = I (gt(x) - j(x))2 dx.

In most function approximation tasks, the target gt is unknown, so we
clearly cannot express the quality of a learning result, j, in terms of gt.
We can, however, compute an expected integrated squared difference (EISD)
between j and its uniknown target, gt, by treating the unknown target gt
as a random variable in the approximation function concept class T. Notice
that the distribution of gt is simply its a-posteriori likelihood given D,•, the
n data points seen so far: i.e. P(gt ID.) oc PF(gt)P(D, Igt). We shall use the
EISD as a criterion for evaluating the quality of an approximation result, 4
for an unknown target function gt:

EISD(j, gt) EtC-6j tI

- J P(gt]j'D)6(ggt)dgt

Let j, be the approximation result given n data points, D,,. Our learning
goal is to minimize EISD(j,, gt) for each new n, and so a reasonable active
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example selection strategy would be to choose the next input location, X,+l,

that minimizes EISD(,+,+i,gt). For a given x,+,, we can predict the new

EISD that results from sampling our next data point there as follows:

Suppose we also know the target output value y,+l at the given x,+l.

Our new data set would then be Dn+i = D, U {(xn+l, Yn+l)}, and the new

EISD between gt and its new estimate j,,+1 is given by Ey[1(j,+i, gIt)IDn+],
where the new estimate, j,+,, can be derived from the new data set, D,,+1
via regularization. In reality, we do not know the actual value of Yn+i, but
we can derive for it the following conditional probability distribution:

P(y,.+ilxrý+l,7V,) = P(Y,•+l Ix,+,, f)P(f Z•,n)df

0( j P(D•, U {(x,+l, yn+l)}If)PgY(f)df.

So, for a given next location to sample, X,+l, we can compute the expected
value of the resulting EISD measure:

14(j,++l Ixn+l, Dn) = Eyo+, [EF[6(g+nl gt)IDi+l U (x.+,, y.+)]Ixn+l, Dn]

= /~+1G P(y,,+, IX,+l,•, D)

E-[6(jn+l, gt)ID. U (Xn 1 , y (2)

Clearly, the optimal location to sample next is the location that minimizes

the above cost function:

x,+, = arg min U(j,+I Ix,+ijP•).

The important questions at this stage are:

1. Can the equations above be analytically solved to yield a specific sam-

pling procedure?

2. Does the sampling procedure allow one to learn the target function with
fewer examples? Does it reduce the sample complexity?

We answer these questions in the context of estimating the weight parameters
of a Radial Basis Function network. In particular, we are able to derive ana-
lytical solutions to the equations above and compare the sample complexities

of active and passive learning.

3 Radial Basis Function Networks

3.1 The Function Class F

We consider a class of d-dimensional Gaussian Radial Basis Functions with K
fixed centers where the ith basis function, gi, has a fixed covariance of Si, and

43



a ccn'7 2 Thecoafd *e~it to he learned are dlenoted by a (I- 1 11 F. ..

- i aLan- rabitrar', function in thiis class can he reprabeiitr c as:

I~~~ ~~ T~m---m - 1..

F a) - cm(--a½E- a).

Firlal!-.- mYe leieenr eýs access to inosv data of 'the for m D, (- {(m, Yj
(en) = u) : .1, 7), wllehre 9 -, is time ciol-nov.c target fninction, andr

'~ zo ica a1 dtn aussiai Imolse wi'th variance a1 . This leads to aim
rxpessior! for' for every candidatie rin G V- that is of the formi:

T~T 
(b -=

lip w-,eigh, parammeters, a.. of the VNA?, soliA.ion (g,ý to the learning prob-
lc mm mmi Ice b r-coveredl as f~ollow.,s:

Y72 C I 2 7292(ý

-'p-

aim 1-- isj a K xK ni at rrm w-,hose (i, j)th" elenment is: -bkiLt(;j ) (xet)
Tl, sý t rsolution line learner proposes on the basis of time data set

irlcsP:cl",ý f imhow time, dataz points are selected. li'e nwprovide aim active
-o- seleci-n g 'tie dcara oprinnallu.

Deý' ih-w are moter-sted in aosv.',ering the two qoiestions at time emnd of

For rie a RB? class considered imerce, it is possible to show, timat aim ana-
IPtca-' oxlmessoiom emxists -for Equiation 2. the cost funmction to mmininmmze

thF v'Kds time otiallocation to sample inext:



,1(0.+1 IX,+i, DO a IC,,+i I

C,+, has the same form as C, of Equation 3, and depends on the pre-
vious data sample locations {xj : i = 1,..., n}, the weight priors EZ-,

a, and x,+i. When minimized over x, 2+, we get :if+ as the maxi-
mum utility location where the active learner should next sample the
unknown target function.

2. Is it indeed the case that the active strategy outperforms the passive
one? To investigate this we randomly generated 5000 target RBF func-
tions with 8 fixed, arbitrarily chosen centers. The priors on the weights
a are provided by EIF = 1K. For each target RBF function, we collected
data according to the active strategy as well as the passive (uniformly
random) strategy for varying number of data points. Figure 1 shows
the mean error rate (i.e., the integrated squared difference, Equation 1,
between the actual target function and its MAP estimate, averaged over
the 5000 different target functions) as a function of the number of data
points. Notice that the active strategy has a lower mean error rate than
the passive for the same number of examples and is particularly true
for small number of data. The left graph shows a situation where the
learner has knowledge of the true priors on T. The right graph is for
a case where the learner has the following incorrect prior assumptions:
(a) the true centers of the target RBF's are slightly different from the
values that the learner assumes them to be, and (b) the learner's pri-
ors on the weights (Ej- = 0.9IK) are different from that on the target
class (ET IK). Despite these incorrect prior assumptions, the active
strategy still outperforms the passive case.

4 Sufficiency Conditions for Pre-Computing
a Data Sampling Sequence

It is noteworthy that for learning RBF weights, the new optimal sample
location, Xn+l, does not depend on the yi data values previously observed
but only on the xi values sampled. Thus, if the learner were to collect n data
points, it can pre-compute the exact sequence of n points at which to sample
from the start, even before receiving any data from the target function. This
behavior has been observed by MacKay [3] for an active example selection
strategy that minimizes only a model parameter variance cost function. For
such cost functions, any class of approximation functions that are linear in
their model parameters would exhibit such behavior.

In our framework, we minimize an output uncertainty cost function that
includes both bias and variance terms. The following theorem provides suffi-
ciency conditions on the learning problem for which our active learning for-
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Figure 1: Comnparing the active and passive mean error rates for learn-

Ing an unknown RBF target function with 8 fixed centers. Top: The
learner uses the same priors on model parameters as the process that ran-
domly generates the unknown target functions. Bottom: The learner uses
slightly different weight priors and has centers that are slightly displaced
from the true centers.

miulation leads to a data selection strategy that does not depend on previously
ohserved y: data values.

T 'eo're= I Suppose F is a class of real-vahled funetions paraineterized by

ad f . On1 the basis of a data set 'D, ={(xi, 7i i= 1, . .. , n), let the MAP
so lao7d to the learning problem be given by a argminacxk P(g(aP,-)).
Th2e> th e following three conditions guarantee that thte ch oice of tq+q will be
iizdepe adent of th2e previously observed Yi 's in T),.

1. P(g(a)nD,-) can be expressed as Q(a-d(,,)). {xi : i = 1 ... o)) where
Q is soene arbitrary function that does not depend on the data, D,,.
In other words, the yi ternis of D, do not appear anywhere else in
P(g (a)ID,,) Q ((a, - (1), {x: i = .... aI) other than in a.
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2. . is linear in its parameters a, i.e.: ga,+a 2 (X)= ga(X) + ga2 (X).

3. The prior distribution on model parameters a has support R'.

5 Remarks and Conclusions

We have extended a previously developed Bayesian framework for active
learning to the case of learning the weights of an RBF network. We de-
rive a specific sampling strategy, and show how this strategy allows us to
learn with fewer examples (alternatively, make smaller error with the same
number of examples) than random (passive) sampling. This is an application
of the optimal experiment design paradigm to function approximation and
seems to bear promise for the design of more efficient learning algorithms.
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Abstract

This paper proposes a novel approach, named Discriminatire
Mectric Design (DM~D), to pattern recognition. DMD optimnizes
the whole metrics of diserimiinant functions with the Mlinimum
Classification Erro r/ Generalized Probabilistic Descent method
(_MCE/GPD ') such that the intrinsic features of each pattern class
can be rep-ýeseuted efliciently. The resultinig mietrics lead accord-
ingly to rohust reccogniiiers. DMID is quite general1. Several ex-
isting methodls, suech as Learning Vector Quantization, Subspace
)Method, Discriminative Feature Extraction, Radial-Basis Func-
nion Network, and tile Continuous Hidden Markor Model, are do-
uinEd as its sor)cial cases. Among tile many possibilities. tins paper
specifically elaborates tile DMID formulation for recognizing fixed-
dimensional patterns uising qjuadratic dhiscriminant functions, and
clearly demnonstratrs its utility in a speak-er-independlent Japanese
vowel recognition task.

Qv.er-learning- is a lotng-st andling problem in the statistical approach to
patterni recognizer rdesign. Because recogtiizers ace tnevitahly trained us-

i onlv fi-nit 'stres pcally finite design samples, recognition accu-
rcy". over the finite design sample set, is not necessarily equivalent to that
over unknownv samples. Acttually, a recognizer achieving high accuracy
over design data sometimes dlegrades in performiance over tutknownu data.
1e3s is the so-called over-learniug phenomenon, anrd generally exists in
sta tistical est imation tasks.
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Pattern recognition usually consists of front-end feature extraction
and back-end classification. In most cases, high recognition accuracies
have been achieved by increasing the number of classifier parameters.
For example, by using Learning Vector Quantization (LVQ), one can
easily achieve a highly-performing distance classifier. This discrimina-
tive design method that enables one to handle multiple prototypes per
class achieves more accurate classification over design data by using more
prototypes, i.e., trainable classifier parameters. However, such high per-
formance over design data does not necessarily guarantee high accuracy
over unknown data (See the later section.). Obviously, here we are faced
with the over-learning problem.

A fundamental solution to the above problem has been to increase
the statistical stability of estimation by reducing the number of classifier
parameters, or degrees of freedom of the model, relative to the number
of available design samples. However, as still vigorously discussed in
Artificial Neural Networks studies, satisfactory solutions to this problem
have not obtained yet. Our purpose in this paper is therefore to develop
a method of alleviating the over-learning through re-consideration about
the other important factor of the recognition process: feature extraction.

It is naturally desirable that the feature extraction should appro-
priately interact with the classification: This interaction enables one to
discover features useful for the classification. However, in practice, no
recognizers yet include such interaction. Incorporating the interaction in
the recognizer design would lead to features peculiar to each class, make
easier the classification, reduce classifier parameters, and accordingly al-
leviate the over-learning phenomenon. In this light, we propose in this
paper a new method, called Discriminative Metric Design (DMD), of
achieving discriminant function metrics for minimizing recognition er-
rors, in other words, misclassifications.

DMD is a general method based on the Minimum Classification Er-
ror/Generalized Probabilistic Descent method (MCE/GPD), and can
be applied to various types of recognizers as well as a wide range of
recognition tasks. By way of example, we focus in the paper on DMD
implementation for a recognizer using the fundamental quadractic dis-
criminant function to recognize static (fixed-dimensional) patterns, and
on its evaluation in a speaker-independent Japanese five-vowel recogni-
tion task.

The relation has been clarified between MCE/GPD and LVQ [4].
The development of DMD greatly widens the scope of such relationship
analysis. In the paper, we specially clarify the relationships between
DMD and important design algorithms, i.e., LVQ, Subspace Method
(SM) [6], and Discriminative Feature Extraction (DFE) [1]. We also
describe that DMD is related to a segmental GPD-trained continuous
Gaussian HMM recognizer [5] and an MCE/GPD-trained kernel function
recognizer [3].
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2 Discr niinative Metric Design (DMD)

2.1 Statistical Pattern Recognition

We consider the problem of classifying an input pattern x e X, where
is the pattern space, into one of the K classes {C,}K1 . x may be

either static or dynamic (variable-dimensional). Our decision rule is as
follows:

C(2): C(x) =Ci if i =argming,(x), (1)

where C(x) is the recognition operation and 9,(x) is the discriminant
function that indicates the degree to which x belongs to C,. The ul-
timate goal here is to achieve discriminant functions that can minimize
the recognition error probability. In reality, however, despite many ap-
proaches, achieving this goal has been rather difficult due to the limited
amount of available resources such as design samples.

2.2 General Formulations of TDMD
In most cases, the discriminant function is simply based on heuristics and
on some kind of scientific knowledge indirectly related to error minimiza-
tion. Howeever, such functions are never guaranteed to lead to a robust
recognition. One way to remedy this inadequacy is to design each dis-
criminant function so as to represent the salient, intrinsic features of its
corresponding class efficiently.

-j - f s'-s ) S

Feature Transformation Operator Class iNlembership Measure on
to Each Ciass-Feaiure Spice Each Class-Feature Space

Figure 1: Pattern Recognizer Based on DMD

Our solution, DMD, is illustrated in Figure 1. Each discriminant
function g, (x) (s = 1,2, ..., K) involves a class-fealurc Ira.sfor'maiol
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operator T, defined as a mapping from the original pattern space X
to the s-th class feature space Y, and a class-membership measure f,
defined on Y,. Hereafter we call the set {fT, f, } the metric. DMD opti-
mizes each metric with MCE/GPD [2] so as to minimize the recognition
error probability. This design can consequently increase the design ro-
bustness: Each class membership is evaluated in its corresponding class-
feature space where features relevant to recognition are emphasized and
information irrelevant to recognition is suppressed.

Note that x is not restricted to a feature vector but may be a pattern
before feature extraction process; the latter case implies that Z1 execute
the individual feature extraction in each class.

3 An Exemplar Implementation of DMD

This paper specially elaborates the above formulation for the case of
recognizing d-dimensional static patterns using a linear transformation
T, and a Euclidean distance-based measure f, (s = 1, 2, ... , K):

y, = W()= W x, X,(2)

S(X) - r, (r112, (3)

therefore
gs(X) (= - ,')T WTW W (X _ r•), (4)

where the superscript T denotes the matrix transpose, each W, has a
size of d x d and r, denotes the reference vector of C,. Consequently,
each discriminant function comes to quadratic-form function. The DMD
(GPD) training is applied to {W 8 }•=I and { 8 }r=-1. The updating rule
for these parameters can be derived using the chain rule of differentiation
and given as follows: for a sample xt which is selected randomly at the
updating step t from labeled design samples and belongs to Ck,

r(') = r~t-1)- týtt(xt;A(t-l))pk,s(xt;A(t-1))Vrsgs(8 t;A(t-1)),

(5)
WOt) : W(t-i) - ,t4(xt; A(t-1))pk,,(xt ;A(t-l))V7wg8 (xt;a(t-')),

(6)

where

Vrgs(xt; A(`-1)) = - ... (t-1)TW4 (t-j1)(xt - 1) (7)

Vw ~gs(xt; A('-')) = 2WVtl)(xt - r(-l))(xt _ r(t-1))T (8)

the suffix t denotes its corresponding parameter status at t (t = 1, 2, ... ,
Arepresents K (> 0) is the learning coefficient

satisfying t= -t 0 and 00 < 1, (x; A) (> 0) denotes the
derivative (with respect to the misclassification measure) of the smooth
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LI. 0, n (se [2]) andc pp.0 (x< YI) denotes the dlrvtve (Ithrscr
ow 1 10 otfunction) of the misclassification measure (see

2-s -iS-po p > 0 and p,'.,j < 0 (j =A '). Properties of the updating
c o:i,,,e 1 cs Fr d i-, ssedl in [2]

Ot( i' LOISenemipar BUMD implemnent airon Canl be elucidated
de, C2 deop ositilonl (S vP) of -7'Y, whichl I given as

-T

-!ru7 and 7, are the orthlonormal miatrices of size d x el, andQ
i I a'h -7 didagonal m-at mx whose diagonal elements {•2 j}$ý called

iM1-ula1! vailues, are non-negative. The ahove equiation says t iiat it1r
v=,-l the 'ipnpt vector into each corltnmn vector of Vf, weiln-ls each

c on IWitl and~ e assigns each to its cortesporiting- hase vector

o *ý, l~e. the coiun> vector of -T~Note that LT, is indepe ndent of the
* oi cl-~no inl till case, u t the Ltrclidearl distance imieasture f,. It

CFý] be eeti 'iat th I projected comiponients w,,ith larger siingtular valtues,

Icontrihute'mr to the class-mel cership ev alnation. correspond

1C, nla- roellvanL illfrmrnat ion ior recognit jol decision. DIDD finds the
-i-pacaloiel 'r set 2,andI the orthionormal hase V , which are

on1 I I:-, P1f r -cogii,'on de11cisioll.

C 'alilau DM73. v.-( condurcted1 a five-class, fiat c-dii ensional Japanese
OL"- -pitl- to cog litlil expe rin-ient in a speaker intlepen lent mode.

e oh-c 1 5owee, c.,ýrat eel fr-om- 520 Isolated words spoken byx 70 speak-
e C~ (:, m 111 and3-1 ccl nales). and d lgitizedl at a samipling ratc of 12 kill.

1ý ee fragl 'nt of eacil vowel se'gment was selected using a, 20 Ins

VVIuclew, a'id conlverted into a ft cogorszer inoput pattern con-

<Itlu' of, 10 IPC ceptral coefficients w,,ithout, the 0-th cocfficient. N'ote

p1111 atemn sample, was a1 static cepstral vector.

Hýý 0 >01nstrat' Ithe recognition performance of the DIND-trained
For car >lnl executitlOl, we coniputeel aia mayes and sla72deed

0>'ccof recogi- 0 ion errior rates with five trials as follow>-;

I> 0 - 1 to 5 (thi 11-til trial){

Sele ct 50 speLakers tanelomnl for a it ollls 912 (ahouit 7500
sarioiles) from tlie xvhole set j", of 70 speakers:

L e' he the- remainiing set, of 20 speakers:

Fo.7 1 to5{

Select 10 speakers randomnly for calrdaloien sel Y2?" 0

(ahorlt 1500 saniples) from (2('2

Let .f2 7 ' he the remaining design2 set of 10 speakers
(ahont 1,500 samples);
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Train the recognizer A(',') using d(nm)

Compute the error rate Pe(v") of A(',') for the validation
set d2(n•m);

Select the best recognizer A(n',m*) where Pev ) = minm v

Compute the error rate d and p(.. of A(nm*) for the design

set Q("'*) and the unknown set d?(n), respectively;

Compute the averages and standard deviations of the error rates with

the five trials ed = (1/5) 1n=, pd) and

,Ded == V(15) Y:n=1 Pe(d) - ed for the design set, and

P - (1/5) E= P,. and SDeU = {(1/5) E pI )2

unknown set.

For comparison purposes, we used four types of recognizers: 1) quadratic
discriminant-based DMD recognizers, 2) a Euclidean distance recognizer,
3) a Mahalanobis distance recognizer, and 4) multi-template (reference)
LVQ recognizers. Each LVQ system used the Euclidean distance for
its discriminant function. Note that LVQ system was trained using
MCE/GPD [4]. All of the parameters in the DMD-based recognizer were
initialized using the Euclidean distance or the Mahalanobis distance.
In both initialization schemes, each reference vector r, was the sample
mean vector of C,. As for the initial value of each transformation ma-
trix W 8 , W(O) was the identity matrix in the Euclidean distance-based
initialization; in the Mahalanobis distance-based initialization,

) = F, ET (10)

Fi 1 1 1 1 , (

Es = [ es,d es,d-1 ... e ,2 e, ], (12)

where y,i and e,,i represent the i-th eigenvalue and its corresponding
eigenvector of the sample covariance matrix of C•, respectively.

Table 1 summarizes the averages of recognition error rates for these
three systems. For reference, the standard deviations of error rates are
also shown in Table 2. The DMD-based recognizer initialized by the
Euclidean distance achieved the highest recognition performance for un-
known patterns. Moreover, interestingly, the DMD-based system per-
formed much better over the unknown sets than did the LVQ system
with several templates, while the LVQ system performed best over the
design set. This result demonstrates that DMD contributes toward in-
creasing the robustness through a suitable design of the class-feature
space rather than an assignment of many templates in each class.
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Table 1: Averages of recognition error rates
__________________________design set unknown set,

DMID (init:Euclid) [2.86% 7.60%
DAID (init:M~ahalanobis) 3. 2 7% 8.09%

Euclidean distance 13. 54 1/' 13.37-%c
Malialanobis distance 4.41% 8. 63%'

LV Q (1 t~emplate) 5.47%/ 8.05%
LVQ (8 templates) 1.613% _________

LVQ (16 templates) f0.726% 10.74%

Table 2: Standard deviations of recognition error rates
___________________design set unknown set

DIND (init:Euiclid) 0.766% 0.679%
DAID (init:MNahialanobis) 1.049% 0.353%

Euclidean distance 1.909% 0.741%
Mahialanobis distance 1.106% 0.775%

LVQ (1 templat~e) 1.352% 0.250%
LVQ (8 templates) 0. 63 4%W 0.702%

LVQ (16 templates) i0.289% 0. 58 6%

2
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Next we show how the values of weighting parameters {p,i} (i.e. the
singular values of W,) were changed by the DMD. Figure 2 illustrates
the initial values and the values after the DMD training for the vowel
class /a/. The results were almost the same for the other vowel classes.
In the graph, the horizontal axis denotes the dimension index i and the
vertical axis stands for the weighting parameter value at each dimension.
Here the metrics of all discriminant functions were initialized by the
Euclidean distance.

This figure shows that DMD yields the large weighting values and the
small ones (and their corresponding rotated feature axes) after training.
DMD suggests that the axes with large weight values are related to the
relevant features for recognition decision whereas those with small weight
values correspond to the irrelevant features.

5 Relationships Between DMD and Other
Techniques

The DMD implementation for the quadratic discriminant function has
important implications for other recognizer design techniques.

Performing the well-known Principal Component Analysis (PCA) in
each class can be a simple solution for finding each metric. In PCA,
the eigenvectors associated with the large eigenvalues of the sample co-
variance matrix represent the intra-class statistical variation factors. To
reduce the influence of such variation factors on recognition decisions,
in other words, to normalize this type of variation, each weighting pa-
rameter ,,i is usually set to the value of the parameter that is inversely
proportional to the i-th eigenvalue; This leads to a commonly-used Ma-
halanobis distance classifier whose metric is specified as (10)-(12). This
PCA-based design, however, estimates the parameters of each class in-
dependently and does not consider the influence of different classes; this
does not necessarily reduce the recognition errors. This insufficiency has
been demonstrated in the experimental results above.

Recently, demonstrations have been made of continuous Gaussian
HMM speech recognizers based on MCE/GPD [5], which have achieved
highly accurate recognition results. In most of these applications, diag-
onal covariance matrices were used: the original GPD adjustment rule
was applicable only to this type of simple form matrix. In contrast, the
DMD adjustment rule enables the full adaptation of full covariance ma-
trices; this will improve the recognition performance compared to usual
mixture Gaussian HMMs with diagonal matrices which essentially cor-
respond to multi-template classifiers using a limited, simplified distance
measure.

It is obvious that the continuous HMM recognizer is a general ver-
sion of the RBF recognizer and the Likelihood Network recognizer [3].
Therefore, DMD also enables the full adjustment of these types of Neural
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Network-based systems.
The feature transformation considered in this paper can be viewed

as a feature extraction process. This point reminds us of the close rela-
tion between DMD and the DFE that jointly optimizes both the feature
extraction and classification processes for the purpose of minimumn error
[1]. It is actually obvious that Di)E can be considered to be a special case
of DMD. The difference between these two is that DFE uses a common

feature space over all of the classes while DMD designs an individual
feature space for each class.

DMD is also related to the Subspace Method in the sense that each
class possesses its own feature space [6]. Indeed, the subspace method
can also be formalized as a special implementation of DMD. For ex-
ample. the CLAFIC method [6], which designs each class subspace by
Karhunen-Lo~ve expansion, can be expressed through the linear class-
feature transformation operator Z and the Euclidean distance-based
membership measure f (. = 1, 2, ... , K) as

YS 'P, VX, (13)

Sdiag( 11...1 0...0), (14)

d-p, elements
7"'Sa • - ' t7,d -"s/ - --' 0.2"'s1 (15)

f, - IY, 112  (16)

where p), denotes the dimensionality of the s-th class subspace and each
v,. stands for the eigenvector of the sample correlation (not covariance)
matrix ,Q,:

si Asi1
'j (i 1, 2 ... 4)(17)

(A,11 > A,> ... _A (18)

and each class-reference vector ?,. is set to zero. Furthermore, the Learn-
ing Subspace Method (LSM) proposed by Kohonen [6], which improves
the discrimination power of CLAFIC by learning, can also be viewed as
a restricted form of DMD in the sense that only V, is adjusted while C =
and r', are fixed. Thus. oUr DMD comprehends the subspace method
and accordingly provides more flexible ways to design robust discrimi-
nant functions for accurate recognition since not only subspaces V, but,
also weiobting parameters r5 (contributions to their corresponding fea-
ture axes) and class templates T, can be adjusted for the minimunM-error
purpose. Moreover, DAID has the potential to discover the dimensional-
ity of each class that is essential for recognition through the adjustmenti
of the weight ing parameters {Psi}>i while LSM determines each di-
Mensionaaitv at the initialization phase and fixes it during the learning

phase.
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6 Conclusion

This paper proposed a novel approach to pattern recognition, named
Discriminative Metric Design (DMD), which fully designs the metric of
each class discriminant function in a manner consistent with recognition
error minimization. The experimental results in a vowel recognition task
clearly demonstrated its high utility. Moreover, a comparison study of
the relationships between DMD and several other recognition methods
provided quite a useful basis for future theoretical analysis and a clear
perspective on feature representation. It is lastly worth noting that one
can easily apply the DMD formulation presented in this paper to dynamic
(variable-durational) patterns by using a state transition structure like
an HMM.
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Abstract

A global optimization technique is introduced for statistical
classifier design to minimize the probability of classification error.
The metthod, which is based on ideas from information theory and
analogies to statistical physics, is inherently probabilistic. During
the design phase, data are assigned to classes in probabilily, with
the probability distributions chosen to maximize entropy subject
to a constraint on the expected classification error. This entropy
mnaximization problem is seen to be equivalent to a free energy
minimization, motivating a deterministic annealing approach to
iniiiniize the misclassification cost. Our method is applicable to
a variety of classifier structures, including nearest, prototype, ra-
dial basis function, and multilayer perceptron-based classifiers.
On standard benchmark examples, the method applied to near-
est, prototype classifier design achieves performance improvements
over botli the learning vector quantizer, as well as over multilayer
pcrceptron classifiers designed by the standard back-propagation
algorithm. Remarkably substantial performance gains over learn-
ing vector quantization are achieved for complicated mixture ex-
ainples where there is significant class overlap.
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1 Introduction

In recent years, the tremendous growth in neural networks research has stim-
ulated renewed interest in statistical classification. Structures such as the

multilayer perceptron (MLP) have the capability of implementing complex
decision boundaries, and have been demonstrated to perform well in com-
parison with conventional classifiers, both for engineering applications such
as speech recognition [8], as well as in the context of scientific inquiry [14].

However, several researchers have observed that MLPs and other structures
trained to minimize the distance to output classification levels ({0, 1} for
the two-class case) do not directly minimize the classification error rate. In-
stead, these networks approximate the Bayes-optimal discriminant function,
or equivalently the a posieriori probabilities that observations belong to a

given class, e.g. [13]. (Similar observations have been made for linear classi-
fiers [2]). Clearly, very large networks may be able, in principle, to accurately

implement the Bayes rule, and thus provide minimum classification error.
However, practical classifiers have restricted size to avoid high complexity

and overfitting of limited training data. Thus, in practice, approximating the
optimal discriminant function may result in significantly greater classification

error than alternative solutions.

Rather than choosing to approximate the discriminant function, a num-

ber of researchers have proposed alternative cost objectives and learning al-
gorithms which better match the goal of minimizing misclassification error

(or minizing risk, if errors are not weighed equally), e.g. [7],[4],[6],[11]. Typ-

ically, these methods descend on an energy surface, using either a batch or
a sequential optimization technique. While these approaches optimize MLPs
and other network models to effectively minimize classification error, a legit-
imate concern is the potential to fall into poor local minimum traps, which
often riddle the energy surface. In fact, the problem of local optima in neural
networks has been acknowledged in a number of papers, e.g. [14]. While
some smart heuristics have been employed for initializing parameters, typi-
cally one is forced to generate solutions based on a large number of random
initializations, and then choose the best result.

We propose a new deterministic learning algorithm for statistical classi-
fier design with a demonstrated potential for avoiding local optima of the
cost. Several deterministic, annealing-based techniques have been proposed
for avoiding nonglobal optima in computer vision [18],[3], combinatorial op-
timization [1], and elsewhere. Our approach is derived based on ideas from

information theory and statistical physics, and builds on the framework of
the deterministic annealing (DA) approach to clustering and related prob-
lems [16][15][17]. DA's probabilistic framework for clustering was derived by

applying the maximum entropy principle to determine the underlying dis-
tributions. In recent work [9], we have shown that the maximum entropy
approach unifies a larger class of optimization methods than was originally
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the distributions must be consistent with the formation of a nearest proto-
type classification rule. This structural restriction may be enforced via a
well-chosen parametrization of the distribution. An appropriate choice is the
Gibbs distribution,

e-Td(X,X~k )
P[x C Cjk] > 1 e_•dxm x ') (1)

which depends on the prototype vectors and on a scale parameter 7 which
controls the fuzziness of the distribution. As -y-- oc), the association proba-
bilities revert to hard classifications equivalent to application of the nearest
prototype rule. Note that this choice can be directly obtained using the
principle of maximum entropy, which provides stronger justification for the
resulting optimization method [10]. However, for conciseness we omit this
derivation.

In our approach, we simultaneously control the probability of error and
the randomness of the classifier. We start with a highly random classifier
with a high expected classification error rate and then gradually reduce both
the randomness and the expected probability of error. A natural measure
of randomness is Shannon's entropy. In fact, Jaynes [5] showed that while
there may be infinitely many distributions which satisfy expected value con-
straints, the least biased distribution is that which maximizes entropy. For
the classification problem, the expected value of interest is the average classi-
fication error < PR >. Thus, the riaximum entropy distribution {P[x C C0H]}
associated with the classification problem is obtained by solving

max HIi max {1 E EP[xGRj]logP[xGRj]} (2)
{Xjk b _ {X~kjo N(X,c)ET J

subject to
1

<P >= N yP[ (E Z xERc,).
(X,C)ET j

Here the cost of misclassification is p(cj) = 1 if c : j and 0 otherwise.
Effectively, entropy maximization over the distribution is achieved through
optimization over its parameter set. Solving this problem is equivalent to
solving the unconstrained minimization of the Lagrangian:

ruin L= rmin m 3< P, >-H, (3)

where fl is the Lagrange multiplier used to enforce a constraint on < P, >.
For fi 0, the sole objective is entropy maximization, which is achieved by the
uniform distribution, choosing the prototype vectors to be non-distinct. For

oo, minimizing L is equivalent to minimizing the probability of error Pe,
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leading to a non-random (i.e. H -0 0) classifier. This solution can be obtained
within our probabilistic framework by choosing all prototype vectors to be
distinct and sending -x- ,. Thus, we observe that an annealing approach
is nalurally obtained by mininizing the Lagrangian starting from /3 = 0 and
lracking the soliition while increasing /3 towards infinity. In this way, we
oblain a sequence of solutions of decreasing entropy and cost, leading to a
"hard" classifier at, lthe limit. The aiiealing process can avoid local optinba
of the cost. and is motivated by the physical interpretation of the Lagrangian
as a Helmholtz free energy [9]. We can rewrite the Lagrangian explicitly as:

L + Z P[x ER 1 i]((cj)+logP[xC ni]) (4)
(X~')E'T j

E ' (E P [x C R3 L.j ] 1, L,.A,
xX,C)ET J (X,C)ET

Here, parentheses identify Lj, the contribution to the cost when the feature
x is assigned to class j, and L£, the average contribution for this feat ure. The
necessary conditions for minimizing L at any /3 are :

Z (L~j L,) P[xxGCij= 0 , Vj lk (5)
(X,,')CYdxJ

an I

0-1- Z ZLx 2 (P[x C Rje.. r- 3)=° (6)
(X~c]T 3

Here u•. is the average distance from x to a prototype, i.e. E. E P[x G
3j k

Cj,(.d(x, xjlk). and ,nj is the contribution to this average from the prototypes
of R, i.e. ,-j = E P[x E C`Jkld(X,Xjk.).

k

These conditions can be interpreted, appropriately, within the context of
supervised learning. The conditiou for a prototypc vector suggests moving it
away from (towards) vectors that it "owns" probabilistically through P[x G
(j]. and for which the cost L.,j incurred by classifying to region Rj is greater
than (less than) the average cost. The optimality condition for the scale
parameter -, leads to a similar interpretation. Essentially, -, is either increased
to solidify ownership of a point by a region if the cost is small, or is decreased
to weaken ownership of a point if the cost is large. The optimization at each /3
can be implemented by gradient descent or any other function minimization
technique. For/3 - x. Jf - 0 and < P >- P,. At tais limit, our method
terminates satisfying the necessary optiniality conditions.
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3 Results

We have performed experimental comparisons of our nearest-prototype method
with the learning vector quantizer (LVQ) [7]. As an example, consider the
two-class data of Figure 4. Each class consists of a Gaussian mixture with
three components. We designed prototype-based classifiers with three pro-
totypes per class, using both the LVQ and DA optimization methods. LVQ
solutions were generated using the public domain LVQ-pak software, running
both an optimized LVQ (OLVQ) learning phase, as well as a fine-tuning phase
with 500,000 iterations. The learning parameter p was set to 0.03. Ten LVQ
solutions were generated based on random initialization and in all cases the
method was unable to discriminate the class 0 "minority" component in the
upper right of Figure 4a (which retains only 5 % of the training set mass).
Apparently, the initialization did not select a prototype from the class 0 mi-
nority component, and LVQ is unable to move class 0 prototypes through the
"wall" of class 1 data which separates them from this component. The best
LVQ solution, which is shown in Figure 4a, achieved P, = 7.7%. Increasing
the number of prototypes, we found that LVQ was only able to discriminate
the minority component when 21 prototypes per class were introduced, and
in this case the method achieved P, = 3.4%. The extremity of this sub-
optimality does suggest that the LVQ-pak initialization could be improved.
For example, if an initialization of prototypes based on Isodata clustering
followed by allocation of prototypes to the majority class of the cluster were
used, much fewer than 42 prototypes (but greater than six) would suffice to
find good solutions. However, this example does demonstrate LVQ's suscep-
tibility to finding poor solutions. In fact, we also performed gradient descent
on < P, > and found that poor solutions were obtained in this case as well -

excepting omnisicient initialization in the vicinity of the optimal solution, the
best performance obtained for six prototypes was P, = 7.0%. It thus appears
that strict descent methods will fail on this example unless given an excel-
lent initialization. By contrast, the DA method using only five prototypes
achieved the solution shown in Figure lb, with Pe = 2.7%. Note that the DA
method is independent of the initialization, placing all prototypes together at
the global data centroid (marked by X) at 3 = 0 so as to maximize entropy.
(Such an initialization is in fact "fatal" for a strict descent-based approach,
as the associated learning rule will not permit a class 0 prototype to pass
through the "wall" of class 1 data.) Then, as f3 is increased, the prototypes
separate, reducing the entropy as well as < P, >. This example demonstrates
the ability of the method to avoid local optima, since the DA optimization
does succeed in moving a class 0 prototype from X directly through the class
1 data "wall" to correctly classify the minority class 0 component and achieve
what appears to be the optimal piece-wise linear result. (Here, two of the class
0 prototypes are non-distinct, so the solution effectively uses five prototypes.)

In addition to this example, we have tested our approach on the "syn-
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thetic" example from [14], as well as on some other complicated syntheti-
cally generated mixture examples. On the example from [1d], our approach

achieved 1, = 8.97 on the test set using eight prototypes and P, = 8.6%
using twelve prototypes, in comparison to LVQ's P, = 9.5% based on twelve
prototypes. For general reference, an MLP with six hidden units achieved
P, = 9.47(. For complicated mixture examples, with possibly twenty or more
overlapping mixture components and multiple classes, we have found our
method to consistently achieve substantial peforniance gains over LVQ. As
an example, we generated training data for a four-class problem involving
twenty-four overlapping, non-isotropic mixture components in two dimen-
sions. We designed nearest prototype classifiers with 16 prototypes (four
per class) using both LVQ and DA. The best LVQ solution based on ten
random initializations achieved P, = 31%. By contrast the single IDA solu-
tion achieved P'. = 2X7. This comparison is typical of what we have seen
lhrough extensive experimentation. Similar performance gains are achieved
for higher-dimensional data sets, but we have restriced these examples to two
dimetsions for visual illistral ion. While for certain problems other structures
such as MLPs or RBFs may be inherently superior t~o the prototype-based
struc, tire discussed here, our results demonstrate the potential of the opti-
mization technique. -Moreover, as we describe in [10], our method achieves
similar performance gains in optimizing the RilF andI MLP classifier struc-
tures.
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Fig'ure 1: A two-class example, with a 3-component Gaussian mixture in each
class: a) The LVQ solution, using three prototypes per class, with P, 7.7%.
b) The DA solution, using three prototypes per class, with Pe 2.7%. Note
that since the solution at 13 =0 placed all prototypes at the global centroid
(X), the DA optim-ization has allowed a prototype for class 0 to "pass through

wall" of class 1 data in order to correctly classify the minority "0" mixture
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SIMULTANEOUS DESIGN OF FEATURE
EXTRACTOR AND PATTERN CLASSIFIER USING

THE MINIMUM CLASSIFICATION ERROR
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2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02 Japan

ABSTRACT - Recently, a minimum classification error training algorithm
has been proposed for minimizing the misclassification probability based on a
given set of training samples using a generalized probabilistic descent method.
This algorithm is a type of discriminative learning algorithm, but it ap-
proaches the objective of minimum classification error in a more direct manner
than the conventional discriminative training algorithms. We apply this al-
gorithm for simultaneous design of feature extractor and pattern classifier,
and demonstrate some of its properties and advantages.

1. INTRODUCTION

Juang and Katagiri [1] have recently proposed a minimum classification error
training algorithm which minimizes the misclassification probability based
on a given set of training samples using a generalized probabilistic descent
method. This algorithm is a type of discriminative learning algorithm, but
it approaches the objective of minimum classification error in a more direct
manner than the conventional discriminative training algorithms [2]. Because
of this, it has been used in a number of pattern classification applications
[3, 4, 5, 6, 7, 8]. For example, Chang et al. [3] and Komori and Katagiri
[4] have used this algorithm for designing the pattern classifier for dynamic
time-warping based speech recognition, Chou et al. [5] and Rainton and
Sagayama [6] for hidden Markov model (HMM) based speech recognition,
Sukkar and Wilpon [7] for word spotting, and Liu et al. [8] for HMM-based
speaker recognition. More recently, the minimum classification error training
algorithm has been used for feature extraction [9, 10, 11, 12]. For example,
Biem and Katagiri have used it for determining the parameters of a cepstral
lifter [9] and a filter bank [10]. They have found that the resulting param-
eters of cepstral lifter and filter bank have a good physical interpretation.
Bacchiani and Aikawa [11] have used this algorithm for designing a dynamic
cepstral filter. Watanabe and Katagiri [12] have used a class-dependent uni-
tary transformation for feature extraction whose parameters are determined
by the minimum classification error training algorithm.

'Present Address: School of Microelectronic Engineering, Griffith University, Brisbane,
QLD 4111, Australia

0-7803-2739-X/95 $4.00 © 1995 IEEE
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as to the class models of the baseline configuration prior to distance
computation.

" Configuration 5: Here both the transformation T and the class mod-
els are computed independently using the MCE training algorithm.

" Configuration 6: This configuration is similar to Configuration 3,
except that the transformation T is made class-dependent; i.e., we now
have K different transformations, Tk-, k = 1, 2, ... , K for K different
classes. We apply transformation Tk to parameter vector X before
computing its distance from the k-th class.

" Conifiguration 7: This configuration is similar to Configuration 5,
except that the transformation T is made class-dependent (similar to
Configuration 6); i.e., we now have K different transformations, Tk,
k = 1, 2, . .. , K for K different classes.

Note that Configurations 2,3,4 and 5 use a class-independent transformation
as shown in Fig.. 2; while Configurations 6 and 7 use a class-dependent
transformation as shown in Fig. 3.

Distance
Measure

.....................................FetrAnlss -" • i

Feature Analysis
C Recognized

Signal X 2 M Class

N

k

..............

Figure 2: A pattern recognition system with class-independent transforma-
tion.
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2. DefOE TRAIiNING ALGOITUTRM,

In this (clion, we. describe hrijefly the minimum classification erroi (MC'L)
trainin- al ociit liiu. For inote details, see, [1]. The NICE algoi itlinn i. descrihed
here( 0on1 fat C on fig-uration i 5.It can he extendied to other conho i irt ions ini
a st rai 'htforward manner.

Ini the pattern recognihion sy stem shown in Fig. 1. the Iinpuit par ameter vector
"IJis tr ansformed to a featr i vect(Loi Y (= TX) and classifie (inito (lass 1'if

I)j < IDj for all j $ i. (1)

whl-et DiP is the distance of fteatuiii yector Y from class i.In thi preseiii
paper, w.e us simple Euclidean (list an cc measure t~o (lefinle tisi dlistaince. 1t
is giveii h"

Di =- 1 Y - miii 1 H2

= 1T - m Hi)112 (2)

whe-e m'ý is i lie prototype vector representing the class i.

Here, we are g-iveni a total of P labeled iraiiiiii vectors: i.e., we have P pa-
rameter vectors XN ) X ( 2)7 .. 1 X(P available For training with correspond-
in g classi*ficat ion (,(I), C,2)..,((p)< known to us. Our aim here is to Ilse
the MCE algorithmn to estimate the transformation runtrix T antd class pro-

totyvpe vectors nP ii M (2)'. o 1)(K using these laheled trainiing vectors. The
Procedure for doing this is descrihed helow.
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The distance of pth training vector from class i is given by

Dý) 11 yI Y(P)-m(p)i 112

11 TX(P) - ?n()112
D (D ))

T •='1~ JXP J i 77,! (3)

We use this distance to define the misclassification measure for the pth train-
ing vector as follows:

d(p) zz D(P) - D(P)(4

c N() (4)

where D(p) is the distance of pth training vector from its known class C(P)
C(p)

and the distance DN(P) is computed from the relation
D~)=argmn r.(5)

N(P) - gmn D)
= ii C(P)

The loss function L(P) for the pth training vector is then defined as the sigmoid
of the misclassification measure as follows:

L(P) f(d(P))
1

+1 e-cxd(P) (6)

where o( is a parameter defining the slope of the sigmoid function.

The total loss function L is defined as

PL = 1: L(P). (7)
p=

1

In the MCE algorithm, the transformation matrix and class prototype vectors
are obtained by minimizing this loss function through the steepest gradient
descent algorithm. This is an iterative algorithm where parameters at, the
(k + 1)th iteration are computed from the kth iteration results as follows:

T8j(k + 1) = Tj(k) - q ,OT• 1 (8)

1 )(k + S (k) - 77 (N(P)) (9)

and

MrnC(P))(k + 1) m= rn (k) - 10nc( ), (10)
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where il is a positive constant (known as the adaptattion constant) and

0 L P - )) ( ,-,'(P)) -_ ((er))) (o

011 j P=1 =

0 L . V (P) (C:, 00

c - _2o f(d,(,))( I f(d(I",) 7S'")'
(S P-=) (j•12)

For the initialization of the MCE algorithm, the transformation matrix T
is taken to be a unity matrix. The prototype vectors for different classes
are infitialized by their maximum likelihood estimates . by their class-
conditioned means).

3. RESULTS

The MCE algorith1 is studied here on a multispeaker vowel recognition task.
The Peterson-Barney vowel data base [13] is used for this purpose. Ilere
each vowel is represented in terms of 4 parameters: fundamental frequency

and frequencies of the first three formants. The data base consists of' two
repetilions of 10 vowels in /hVd/ context recorded from 76 speakers (33
men, 28 women and 15 children). Fundamental and formant frequencies were
rieasured by Peterson and Barnev from the central steady-state portions of
the/h\d/ utterances. We use the first repetition for training and the seconid
for testit'. We use the Euclidean distance nteasure for classification of the
4-ditiensional parameter vector into one of the 10 classes. The model for
each class is determined as the mean vector of the training patterns of that
c4ess, In our implementation of the MCE training algorithm. we use I•e
steepest gradient descent algorithm with the adaptation parameter updated
every iteration using a fast-converging algorithm described by Lucke [14]

In order to study the convergence properties of this algorithm, we study it
for( Configouration 5. Figure 4 shows the the loss function, recognition error
on trainintg atid test data as a function of iteration iumber. It can be seen
fromn this figure that the loss function is decreasing with number of iterations
and the algorit hom is converging reasonably fast (within 500 iterations). Also,
recognition results on test data are similar to those oit training, showing the
generatizat ion property of the algorithm.
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The MCE algorithm is studied for all the seven configurations. The results

for different configurations are listed in Table 1. We list in column 2 of this
table the total number of free parameters used in the transformation and the
classifier. Column 3 of this table lists the number of parameters computed
by the MCE training algorithm. The numbers shown within square brackets
in columns 2 and 3 correspond to the vowel recognition task used in this
study, where K 10 and D 4. From this table, we can make the following

observations:

(a) Loss function
400,,,

00200-
.-J

0 500 1000 1500 2000 2500 3000
Iteration number

(b) Recognition error rate (in %) on training data
m60|•

*~40

S20 F

0 500 1000 1500 2000 2500 3000
Iteration number

(c) Recognition error rate (in %) on test data
60

20

0 500 1000 1500 2000 2500 3000
Iteration number

Figure 4: Results for Configuration 5 as a function of iteration number. (a)
Loss function, (b) Recognition error rate (in %) on training data, and (c)
Recognition error rate (in %) on test data.

1. The MCE training algorithm performs better than the ML algorithm
(compare Configuration 1 with Configuration 2).

2. The recognition performance of the pattern recognizer improves with an
increase in the total number of free parameters in the transformation

and the classifier.

3. For a given number of free parameters, the recognition performance
improves as the more number of parameters are updated by the MCE
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Table 1: Recognition error rate (in %) for different configurations of fea-
ture extractors and classifiers studied using the minimum classification error
(MCE) training algorithm.

Confi- Total no. of No. of parameters Recognition error rate
guration free paramecters updated by MCE Training Test
Conf. I ND [40] 0 [0] 48.29 48.16
Conf. 2 ND [401 KD [40] 34.47 36.18
Conf. 3 D2 + KD [56] D2 [161 33.16 33.29
Conf. 4 D2  K ND [56] D 2 [16] 13.95 16.32
Conf. 5 D2 + ND [56] D 2 + ID [56] 9.87 11.45
Conf. 6 KN(D 2 + D) [200] ID2 [160] 9.47 12.37
Conf. 7 K (D 2 + D) [200] K(D 2 + D) [200] 9.34 12.76

training algorithm (compare Configuration 3 with Configuration 5 or
Configuration 6 with Configuration 7).

4. Observe Configurations 3 and 4. Both of these configurations have same
number of free parameters and same number of parameters are updated
by the MCE training algorithm. But, Configuration 4 gives significantly
better results than Configuration 3. This is because in Configuration 4
the transformation T is applied to the parameter vector X as well as
the class models prior to distance computation.

5. Observe Configurations 5 and 7. Configuration 5 uses a class indepen-
dent transformation, while Configuration 7 uses class-dependent trans-
formations. Therefore, Configuration 7 shows better recognition per-
formance than Configuration 5 on training data, though the difference
in the recognition rates for the two configurations is small. However,
note that recognition performance of Configuration 7 on test data is
inferior to that of Configuration 5. This happens because the number
of parameters updated by the MCE algorithm are too large for the lim-
ited amount of data available for training and, hence, the results do not
generalize to test data properly.

4. SUMMARY

In this paper, we have studied the use of minimum classification error (MCE)
training algorithm for the design of the feature extractor and the pattern clas-
sifier. W•e have investigated a number of configurations of the feature extrac-
tor and the pattern classifier, and have demonstrated a number of properties
and advantages of the MCE training algorithm.
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Abstract

Subspace Method (SM) is one of fundamental frameworks for
pattern recognition. In particular, its discriminative learning ver-
sion, called Learning Subspace Method (LSM), has been shown
quite useful in various applications. However, this important de-
sign method leaves much room for further analysis due to the lack
of a link between LSM and the ultimate goal of pattern recogni-
tion, i.e. the minimum error situation. In this light, we investigate
in this paper SM from the viewpoint of the Minimum Classifica-
tion Error/Generalized Probabilistic Descent method (MCE/GPD).
Applying MCE/GPD to SM, we formalize a new discriminative
subspace method, called the Minimum Error Learning Subspace
method (MELS), which enables one to directly pursue the mini-
mum error recognition. This paper also provides a rigorous anal-
ysis of the MELS's learning mechanism as well as a comparison
between the conventional LSM and MELS.

1 Introduction

Subspace Method (SM), especially its discriminative learning version
called Learning Subspace Method (LSM), has been shown quite useful
in a wide range of pattern recognitions because of its computational sim-
plicity and robustness to statistical pattern variations [1, 2, 3]. However,
due to the lack of rigorous analysis from the viewpoint of the Bayes de-
cision theory, this valuable recognizer design method still leaves much
room for further mathematical investigation.

In the meantime, the Minimum Classification Error/Generalized Prob-
abilistic Descent method (MCE/GPD) has provided new, general math-

0-7803-2739-X/95 $4.00 © 1995 IEEE
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ematical bases for designing pattern recognizers aimed at minimizing
recognition errors, or in other words, achieving the optimal minimum er-
ror situation [4]. Actually, it has been shown that the widely-used Learn-

ing Vector Quantization (LVQ) is a simple version of the MCE/GPD-

based distance classifier [5]. The analogy between LVQ and LSM natu-

rally suggests an analysis of LSM from the MCE/GPD viewpoint.
In this paper we investigate how the SM's discriminative power can

be increased in the MCE/GPD framework. We also formalize a new dis-

criminative subspace method, named Mlliimam Error Learai•g Su bspace
mdhod (3MELS). This paper provides detailed analysis of the learning

nature of MELS and proves that this proposed method leads to at least.

a locally optimal recognition situation. A comparison between the con-
ventional LSM and MELS is also discussed.

2 Conventional Subspace Methods

2.1 Pattern Recognition by Subspace Method

We consider the problem of classifying a d-dimensional input pattern

C C Rd into one of the K classes {C,}j 1 using the following decision
rule:

C(-B) = Ci if i= argmaxg, (ax), (1)

where g,(x), called the discriminani funclion, represents the degree to

which x belongs to C, and C(.) is a recognition operation. In the SM
framework, an individual class subspace in the d-dimensional pattern
space is designed for each class, and each input pattern x is classified as

the class giving the maximum value of the orthogonal projection of a.
That is to say, the discriminant function of the s-th class (s = 1, 2, ..., K)
is defined as

ga;,11~ a 2  (2)
Us = [ Usi 's,2... ]sp 1, (3)

U'sj = [ 1t,l,i 11s,2,i ... %s,d, i ]T ( = 1, 2,'"., p ), (4)

where I denotes the Euclidean norm, Us is the d x p, (p, < d) full-
rank base matrir whose column vectors span the s-th class subspace V,,
and the d x d matrix PET, is thb (orihogonal) projection matrix onto V,

and is expressed as

PU,= -U(UTUj-IU T (5)

where the superscript T and -' denote the transpose and the inverse,
respectively. Consequently, the discriminant function is rewritten as

g' (x ;Us) Z=TXUs(Us Us )Ux, (6)

and it turns out that the method of designing each class subspace {V, }I- 1
or base matrix {U l'ý , determines the quality of recognition decision.

78



2.2 A Brief Review of LSM

The most fundamental algorithm for designing subspaces is the CLAFIC
method, which designs each class subspace by using Karhunen-Lo~ve
expansion [1]. Since it designs each class subspace independently without
considering the influences of other competing classes, it is not necessarily
the case that the CLAFIC method can reduce the recognition errors
efficiently. To alleviate this inadequacy, the Learning Subspace Method
(LSM) was developed by Kohonen [1]. In LSM, each subspace is trained
according to the recognition result of each design pattern so that the
projection onto its true class gets larger while that onto each different
competing class decreases.

Let us consider the subspace design problem using a labeled training
sample set ?= {x,J}. Suppose that an input pattern x, is selected
randomly from J? at the t-th iteration. In LSM, if xt belongs to the
k-th class, each orthonormalized base matrix U, is adjusted according
to the following rule:

UJ + (IP+ X t[xT)Uk(• (the true class), (7)

Yj (0 =J(I - 11jXtXt)U/'-1) (the competing class) (8)
(j = arg ,#max g,(xt; U~t-')))

UVt) = U (t) ) (s = k,j), (9)
Uýt) = Ui (t-') (i = 1, 2, ..., K; i :A k, j), (10)

where I denotes the identity matrix, Pk and jpj are the positive real

numbers called the learning coefficients, and the ps x p, matrix T~t)
represents the orthonormalization operator for the column vectors of

6,(t). Detailed discussions of the properties of LSM are made in [1].
As mentioned in [1], the optimal (in the sense of minimum recog-

nition errors) values of Pk and pj are very difficult to find. Actually,
LSM was vigorously investigated with regard to convergence properties.
However, its capability to attain the minimum error situation has not
yet been sufficiently analyzed. These values are thus usually specified
heuristically, e.g. by performing certain preliminary experiments. Ob-
viously, a mathematical method is needed to determine these learning
coefficients so that one can directly persue the minimum recognition
error probability by using the above formula.
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3 Discrihminative Subspace Method for Min-
imum Error Recognition

3.1 Formalization of MELS

The learning mechanism of MCE/GPD is based on gradient search opti-
mization. The correction vector at each iteration step can be derived by
differentiating the loss function in the recognizer parameters. Detailed
discussions on MCE/GPD are made in [4. 6].

The first step in the MELS formulation is to derive the first-order
derivative of each discriminant function. Its result is summarized in the
following theorem.

Thaeorennm 1 The first-order deriealive of g, (x; U,) with respect to U,
is gih.eO as

v~ U,(.e;U,) 2sP -, rTUs(UTU,)-', (11)

e-h ýre thinc iatrix d dfferentiation is defined as 7A ( ,j) (A
01,']

L - S5 UUY t f (12)

nlich is an orthogonal projecoa operator onto the orlhogon~al cornple-
a eat of V, = range U,.

Proof. See Appendix A. El
Next, by applying the MCE/GPD adjustment rule to the above

derivatives and operating the orthonormalization, an MCE/GPD-based
subspace design algorithm, i.e. the MELS method, is formulated as fol-
lows:

The M -S maethod

At the t-th iteration, if a randomly-selected training pattern xt belongs
to the k-th class, then

&0)!• = u!•t-1) t v •(;Y •) (13)
U -- L/-F)T (")- ( 1= , 2, IK), (14)u(14

(1.5)

V• p (.o- ••Pi - 2?%_•)xiTU!i-) (16)

= u ... U •Q R, (IT)

-> 0, x 1)) (> 0) denotes the derivative of the loss fiic-

io I 4] t,•(; 1 (c-1 denotes the derivative of the in isclassificaton2
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measure [4] (Pk,k < 0, Pk, > 0 (s k k)), and each T(t) denotes the

orthonormalization matrix applied to U,

If we take the L., norm in the misclassification measure (see [4]), the
MELS algorithm leads to its special form named MELS*:

The MELS* method

At the t-th iteration, if a randomly-selected training pattern xt belongs
to the k-th class, then

0(t . U-1,DL)T(t--l) (i
Uk~ ~( + 2,-,f'(xt; AY')t(~~~~ k U(8

- ()) " 'T) Ut- 1, (19)
-2Etf'(xt; (19)~-IXt

(=iargmax gs(xt;UY•-I)))

U(t ) - U()Tt) (,=k,j), (20)

UCt) U -l(i=,,..Kikj.(21)

It can be seen that this MELS* algorithm closely resembles Koho-
nen's LSM. The difference in their forms is that MELS*, unlike LSM,
includes the projection matrix Pk.

3.2 Convergence Property of MELS

One may think it trivial that MELS can achieve the minimum recogni-
tion error situation in the same way as MCE/GPD because it is simply
derived by applying MCE/GPD to the SM framework. However, the
fact that MELS includes the orthonormalization operation, which was
not used in the original differentiation-based GPD adjustment, seems to
require a further investigation of the learning convergence.

We first introduce the following theorem.

Theorem 2 Assume that IV-,,,fk(xt; A('-t ))I < oc (s = 1,2, ...,K;j
1, 2, ..., d;i = 1, 2, ... ,p,). Then, if the Gram-Schmidi orthonormalization
(GSO) is applied to the MELS parameter adjustment, the parameter se-
quence {U5t) (t = 1,2,...)} (s = 1,2,..., K) obeys the following rule:

U -t) = U5t-l) - EtVujtf(xt; A(t- 1 )) + O(E[). (22)

Proof. See Appendix B. 13
With this theorem and the theorems described in [6], we next verify

that MELS can attain the minimum recognition error situation. Define
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the following vector which corresponds to A [ U1 U 2 ... Urj] one to
one:

A = [ 11,,1 . s,j,i UKdp) (23)

Accordingly, the rule (22) can be expressed in terms of A as

A( jiA-1) - e•V~•(xt;A t-') + O(o-). (24)

There exist a d(ZI- p)-dimensional vector dt (I dII < oc) such that

S=X - (V AC ( t; Aet-x)) - d,) (25)

For simplicity, we define

A(t)- V7\,4 (xt; A(t-1)) - Edt. (26)

Furthermore, it can be seen that the Hessian matrix exists,

(w;AA) =V (k(X; A), (27)

since each orthonormalized matrix U(' is full-rank. Then, we reach the
following theorem guaranteeing the MELS convergence:

Theorem 3 iake the following assumptions: for all t C {1, 2, .. ,

al) 1V/ , A (n;A(t-1))l < oo
(s = 1, 2, ...,. .j = 1,2, ..., d i = 1 ,2, ..., p ,

a2) < AA 1(11/k(xt; A('-') - OtAA(t))AA@) >< > o,
where < +. > denotes the inner product and 0 < Ot < 1.

Then, if an infinite sequence of random observations xt is presented for
training and the parameter adjustment rule of (13,14) is utilized with
a sequence o• that satisfies J t -E oc and TE 2 < 0o, then the

parameter sequence {A(`;t= 1,2,...} according to iIIELS canoverges with
probaiblity one to a A' which results in a local minimum of L(A) under
the orthonormality constraints, where L(A), called the expected loss, is
defined as the expectation of L(o:x;A) over the whole pattern space X and
approxmnates (arbitrarily closely) the recognition error probability in the
case of the smoothed 0-1 loss function (see [4, 6]).

Proof Taking Taylor expansion,

(x (t)). = - k 1(io A('-'))'-E IdHV xt;kA('-A))11

K6' < dt7 VA 4(x,: At'-)) > (28)1

+ ;7K < AA(tI,71T(xt; A(Ol 0 AA(i)AA(A ) >

where the last term denotes the Lagrange's remainder term. By the

Cauchy-Schwarz inequality,

I < dT 17AI{(X; A(t -1)) > I < IlId, IIV 1,.(x,; At t -))I < no. (29)

"T'hle], the same proof as in [6] can be applied. 0
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4 Conclusions

We have studied the discriminative learning nature of SM from the view-
point of minimizing recognition errors. Based on MCE/GPD, we have
also formalized a new discriminative SM algorithm called the Minimum
Error Learning Subspace method (MELS). MELS is a slightly different
version of the conventional LSM and has been proven to achieve the
minimum error situation. This result significantly increases the SM's
applicability by providing the mathematical guarantee of training opti-
mality.

Appendix

A Proof of Theorem 1

First we show the following formulae related to matrix differentiation
without proofs: with proper-sized matrices C and X,

Vxtr(CX) = Vxtr(XC) = CT, (30)

Vxtr(CX T ) = Vxtr(X T C) = C, (31)

where tr denotes the trace operator; if a matrix C(t) is non-singular and
is parametrized by a scalar t,

d C(t)-i - -C()-1 Wd(d) C(-1. (32)

The orthogonal projection defined in (6) can be rewritten as

g(x;U) = tr [U(UTU)-IUTXXT]. (33)

Ilearafter we omit the suffix s for simplicity. Then, using the above-
listed formulae, it can be easily shown that the derivative of g(x; U)
with respect to U is expressed as

Vug(x;U) = 2xxTU(UTU)-I {VvF(V)}v=u , (34)

F(V) = tr(AY), (35)

A = (VTV)-l, (36)

Y = UTXXTU. (37)

Let vij be the (i, j) entry of the matrix V and am,,, be the (m, n) entry
of A. Considering that A is a function of V, the partial derivative of F
with respect to each entry vij is derived using a chain rule as

OF(V) P P OF Oam,,, OF )T DA I

-Oam Ov, --tr[ J•-j • j (38)
m=l n=8
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iL ( < i) _ •t.,Ik(xt;'A> t-''), (47)

U•) I (t)
) ('s,1 (48)

From (47) we can get
IjuiLt 112 1 + _IV21j (xi; A(t-))112 (49)

because of the orthonormality of U 1t-1 and Lemma 1. Therefore,

1 1
1---(-E M+(+EM)- - (-. , (50)

where M = 1IV,,1 k(XI; A(t-1))112. Then, by (48) and (50), and because
of the boundedness of IIVs,lfk(xt; A(t- 1))Il, u(') becomes

niU - ,( + o(e) + Y() ii() (51)s,1 -s,1 t •t 3s,1 Sl l(51

'E ( 2 (52)
ciE2) (1 + 2A-

F() (1 ±t - (1 - 2 .tm (53)

Lemma 2 Irn -y(1) 0.

Proof. Since lim,2_. 0 F(,-) = 0, and by de lHospital's theorem,

lirnn (t) lira dF(:*)/d(62)•;-•o"•, = • -o d(Et)/d(-2)t

lim- (1+ 2M)-i+ M=10.
St -0- H02

Accordingly, considering Lemma 2, we can say that

i(t) = (t-) - ctVsl k(x t; A(t- 1 )) + O(c2). (54)

Next, suppose that in each case i = 1, 2, ...,j the following equation
holds:

8it~ S'Z 6-'_,ifk (xt; A('-')) + o(et), (55)

and consider the case i j + 1. According to the GSO, the (j + 1)-th

normalized base vector u(t) is derived from u() as
n i d s e Is,j + s,1Ji= a

s -() - i ti T sj-(t) (56)

iSj+ Si $/ j1

V Mt

U(t) ,j+1 (57)
S~J+1 ý(t) 

(578
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Not~e that,

ul 8 i31 - t7 ,j+1te.(at; A(- 1 )). (58)

From (55) and (-8) we can get (i = 1, 2, ..., j)
71 t)T 'T (t.) ( 2

Si S,,, = O(t) (.59)
S) /(it-)a d e a1. 'hr orro

because of the orthonormality of U,_ t de
(56), (58) and (59), ah

(t) + (t- ) 
+

- ,, V5 ,J-m!r ( rt; A(t-)) + O(1•), (60)

and accordingly we can get

iv± 1 1 H2  1+ E2 t))1 2 + O(r2)

because of the orthonormality of Ukt-') and Lemma 1. Then, according
to the logic analogous to the case i = 1, we reach

-- rX7,j 1+i t; /i(-)) ([+ O(F2). (6)

This completes the proof according to the mathematical induction.
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A UNIFYING VIEW OF
STOCHASTIC APPROXIMATION,

KALMAN FILTER AND
BACKPROPAGATION

Enrico Capobianco*
University of Padua, Statistics Department

Abstract

In this paper the relationships between the Stochastic Approxima-
tion, the Kalman Filter and the Backpropagation algorithms are inves-
tigated. We show that when the Neural Network architecture at hand
can be formalized such that the approximation of the optimum for a
nonlinear objective function is the problem for which we seek a solu-
tion, then both Stochastic Approximation techniques and appropriate
Kalman Filters can be employed in order to reach the goal but the lat-
ter can also handle various structural characteristics of the stochastic
processes involved and suggest a more efficient two-step estimator.

1 Introduction

Recent developments of neural networks have required comparisons with sta-
tistical and control-systems approaches in order to verify the potential gains
from using neural nets for statistical parameter estimation, nonlinear dynamic
system modelling and identification, time series prediction, optimal and sub-
optimal filtering etc. Various algorithms have been proposed and tested on
a real or simulated basis and they showed interesting results. Other studies
have considered the opportunity of unifying the theoretical concepts behind
the construction of the practical algorithms; this paper belongs to this sec-
ond category and is devoted to synthesizing the most important learning pro-
cedure, i.e. the backpropagation algorithm, with stochastic approximation
techniques and Kalman Filter algorithms. The paper proceeds as follows.
Section 2 describes how the backpropagation algorithm is easily embedded in
the stochastic approximation framework. Section 3 introduces the extended

*This paper was prepared at Stanford University while the author was a visiting research
scholar with the PDP research group.
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and J i crated versions of the Nalman Filter and shows the relationship existing'
vith the (-atiss-Nexxt on method. S(ection 4 points out, the hasic advantages
Itoal can dcrive from working wvit h a state space represe ntation of the neural

network and introduces a two-step parameter estimiation procedture. Section
5 sfrthe conclusions.

2 Backpnropagaticn and Stochastic A morox~ma=
tioanc algoyithaaas

Pollov,,ing [81, snppose xve have a nonlinear ohject ive function j( XI 0) xvherc
fRk x 0 - Rt. Ni is a k x i random input vector and 0 G 0 C RP

represe nts the vector of, unknown-i parameters. We want. to use this fuinction
fcr forecasting the ranidomn variahle yt and to ilo this we allow the folloxviDg
sing~le htdden lax-cr feedforward network structuire for f(Xi, 0):

f(X~,,0)- '+ 'Tr;)()
j=1

X anid F : R - ft (a hounded andI continuoslv different iahle func-
tion ). C'oinsidr that J'(Xt,0) is an approximation of the ohjective function

x ) ]E(yý /A--). InI this nonlinear least, square set-up we seek a solution 0ý
I o ai~ [E( [!,,,f X 0)]2)], or equivalently to E(Vf f(XI, 0) Lyt - f'(XI, 0)1)

h-\ li Torpr esciit ing the gradlient I- x 1 vector calctulated w.r.t . 0. A xvery
,[-- .n' xlraixad wtxa t~o solve this problem i to employ the liohhmns-TMonro

R A~ 1)xS ochastic A pproxuimat~ion algorithm, xvhose structure is gixven hy:

0-,+ 0 1 + 6t V f(XM, 0) ["'i - f (Xt, 0)] (2)

hx~is recinon is that iof a Stochastic (" radicnt method and there fore g-eneral-
IUe ie3.ckpropagatioii '13P) algorithmn [121 for neural netxwork learning in

allov -ii, for a t; tine varvi og learning rae. In [8] some modifications to the RAM'
ar i em presen1tedl in order to speed ttp the convergence rate anid thtis

:11hld Pt tinss-)\ cxvion stip at each tupdat lug stage ol taming'1 a Mlodifiedl

0,+t -01.-61 cdl_ a VfX, ! 00)[m - f (Xý 0ý) 3

t+1 I + 6i [77 of(X , ,Ot) )Vjt(X1 . 0I - Lt](I

nw ((icD'.L) 0')' is the nexv aiugmexnted p)aram eter victor As
o' trhe ahove uxxodfif'cationi and oither technical devices emp-loy ed III

orcý ý void itierica4 prohleiims and deal xvithl the coiipntiatmouna buor-

,1, illC--d th nov a xiiwlgorithm anid therefore lie cor~respondeni g~enetalized
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backpropagation scheme are able to perform with a better convergence rate
than the simple RM scheme also when moderate dependence is present in the
data. Of course the approximation to E(yt/•Xt) is only locally optimal, but
it's nevertheless important to relax the usually retained " i.i.d." assumption
about the stochastic process generating the data. Then, the final important
contribution given in [8] is that of showing the consistency and asymptotic
normality of the designed estimator, under appropriate conditions on the
learning rate (i.e. bt = (t + 1)-i).

3 Extended and Iterated Kalman Filter algo-
rithms

Artificial Neural Networks can be conveniently cast in a state space represen-
tation. A general nonlinear state space model is given by-a system equation
xt+1 = gt(xt) + wt and a measurement equation yt = ht(xt) +- vt where ga(.)
and ht(.) are nonlinear functions. Consider now a k-layered feedforward net-
work structure described as in [3]:

Nk -1
-kj k--!,kok-1+k(5'01 o, - (5)

1=1

where the input of the jth node in the kthl layer is given by the sum of the
product of the connection weight w with the output and a bias parameter, and

0 F(ik) (6)

where the output as a function of the input through F : R -- . Given the
standard BP procedure:

kW-I'k(1 + 1) = t -l,k(,) - 5k(t)ok-1(t) (7)
WijwIj i• - 7

where 6 is the learning rate and cj (o_ - yk)Fl(iý'), we can rewrite the
network in state space (and usually compact notation) form as:

Wt+l= Wt + G&j (8)

Yt= Ot + Th (9)

where 7h is the output error, G~t is equal to the correction term' of the
BP recursion (7), but with only ýt characterized by pure erratic behavior,
and where the signal in the measurement equation is actually Ot(Wt). As a
matter of fact in this framework the Extended Kalman Filter (EKF) and/or
the Iterated Kalman Filter (IKF) represent the master estimation scheme,

1The matrix G separates in a convenient way the deterministic components from the
purely random ones; see [3] for details.

89



since standard approximations are introduced in order to derive a suboptimal
filter for the signal or to forecast the observed random variable. The general
nonlinear functions git(.) and ht(.), when sufficiently smooth, are expanded
in Taylor series about the conditional means qt/ and £t/ti-, thus obtaining

.J,(xt) = gt(dtlt) + Gt(xt - •:•/l) + ... and hj(xt) = ht(i 1,/,_1) + H,(xt -
Xzl/t-) + .... A formal way to operate with a more accurate algorithm is the
following one 2 ; starting from the EKF algorithm:

i+ = ýý- + K(y - h(i-)) (10)

P+ = (I - KII)P (11)
H = hl(ýý-) (12)

K = PH'(HPH' + R)-' (13)

and given x x we can obtain the Iterated tKalman Filter as follows:

zi+= + Kit'( - h(xit) - Hit(Sc - xit)) (14)

Pit+, =- (I - £itHit)Pnt (15)

Hit = h'(Xn) (16)

I£•t = Pi1I-Ijt(HijPjtHI, + ±R)-1 (17)

Recently [2] have shown that the IKF algorithm is an application of the
Gauss-Newton (GN) method. It's common in statistics and econometrics to
work with estimators that aim at minimizing some sun-of-squares functions
like S(O?) = c•, where the vector c represents a residual term from an es-
tirnated linear/nonlinear regression or time series model. The vector of first

derivatives, or Gradient, in this case is v(O) as( = 2 -/ and the

Hessian is given by 1/(O) = S(s, 2 Z -' Otf, - a2" cj]. Several schemesdsoo' as bas baeaeare able of iteratively finding a solution to the initial minimization problem.

The most general one is the Newton-Raphson (NR) method, which is given by:

0'a Ic act 0 2e1 ac (18)-00 Wo, aMaoW 0- a

Since the term involving second derivatives is usually small when compared
to the first derivatives product term, the GN scheme approximates the above
iterative solution and presents a formula that is identical to NR, apart from
the term with second derivatives. In [2] this last approximate scheme is

2 A different filter can be derived by including more terms in the Taylor series expansions,

thus obtaining second order Extended IKalman Filters or, when ht (xt) can be linearized
about the updated conditional mean estimate it/t, it should be possible to improve the

linearization and thus the final estimate of the state variable (see [1]).
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applied to the log-likelihood criterion function 1(c) = c'Q~ c) derived from
a state space model whose components are z = [y, i]', rn(x) = [h(x), x]',
z - N(m(x), Q), with the 2 x 2 matrix Q having zero off-diagonal elements
and the variances R and P in the main diagonal. Given that in this case
S(O) =1 C 12= (c'Q- 1 c) and given the factorization B'B Q-, we have
c(.) = B(z - m(x)) and thus a -Bml(x); replacing this last term in the
GN formula, it is shown in [2] that, after some algebra, the same identical
updating equation employed by the IKF to estimate the state variable can be
obtained. Thus, by induction the iterates from the GN method correspond
to those from the IKF algorithm.

4 Some extensions and generalizations

Since we showed how to cast a neural network architecture in a state space
representation, we should try to exploit the properties of it. The most im-
portant fact is that from the Kalman Filter algorithm and its variants we
obtain, in a very elegant and immediate way, the likelihood function through
the well-known prediction error decomposition device [13]. The likelihood
function for the whole set of observations is obtained by the joint PDF, i.e.
L(y, 0) = HN~lp(yt/Yt_i), considering Yt- 1 the set of observations up to and
including yt- 1; since the innovation or prediction error computed by the filter
is n7t = yt - E(yt/Yt-1) and var(rp) = var(yt/Yt-i) = Dt, when the obser-
vations are normally distributed the likelihood function can be expressed in
terms of the innovations. Therefore the likelihood function in prediction error
decomposition form is:

ogL1 N lN I (19)logL-- 2 log2vr- 2El2g t
t=1 t=l

considering a k x 1 r7 vector and N observations'. For the case we study,
where a nonlinear model is the object of investigation and some approxima-
tions were used, the solution is of course suboptimal and close to the optimal
one according to the accuracy of the approximation involved. But there are
other aspects which deserve to be mentioned, like:

* the state space set-up can deal with data from stochastic processes
which are stationary or not and with parameters (those which build up
the functional form of the neural network, for instance) that are fixed
or time-varying

3
Under Gaussianity the filter delivers an optimal Minimum Mean Squared solution for

the estimation problem; under hypotheses different from the Gaussian, the filter gives only

a Minimum Mean Square Linear solution and the values which are computed are Quasi

Maximum Likelihood estimates, less efficient but consistent (and therefore useful to start

a recursive procedure).
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C)-- 1D Ot,0q$

Z -[IeYj'D- )( - D-pt 1) 7)] - D7 q, (20)
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- i~a

F nýc -vcc týx ve-oc o' derivatives 'c or -1 p and i - 1 A'

-lies Imjeccs ill ;,e COIIIIDLiteCC tilU~l 0 ) iiIDtddit Ooii IMtSD5CS 0f th Ic 1F;
---<wnd---atnewe' cnit of' the filtet 0I = 0 0L t. + 6< ... 0,,] cci

c-ci P a i~-ix se<t of 1t'11ON-C t olls ', aimd ci jac N ai11x>¾ iid~ lhIe iciicecical
aTý-i- erue ti-~ io> the~t icrixati'esIare qi I - i 67 -][D(' - DJ].

D<>D7]e BecTActt -1 1a;1i al a Id I liusil ill ( BAIŽI) ttlgocil 11 NID

t I hte -pu~ mio oil 01' th Ilessialm ix- Ih IcelNYlktDo~vic oil teci-tDocltct
- to ie 1> a theiDo I ilcialed cbioice Nre iDCvc b order

-th motCli ' 1 1D 10
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01o 0 1 o ' L
0 . r )(21)
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of the powerful state space machinery for the neural network representation

has not been exploited. Then, from the inferential side it should be important

the possibility of employing two-step estimators that use likelihood informa-
tion (through its functionals involved) in order to reach better asymptotically

efficient final estimates.
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Abstract--- A new unsupervised competidtiveý leýarning rule is intro-
duced for to1 )ology-preserviiig map formation and vecto( r quianiti-
zat(ion1. Theý rule., calleýd Maxinumn Entropy leýarniiig Mulo (IVER),
achie~ve~s a glob ally- orde!red map by performing local wetight up-
dates only. Hec. contary to Kohonen's self-organizing inap algo-
rithin and( its many variations, 110 neighborhood function is ne~eded.
Theý ruleý yields an eq.(umprobable quantization of a 1- dimensional ini-
put p. d.f. Simulations are performed to show that the dlynamiical-
and~ converge~nce( propeýrties of MELI. are e~ssentially (liffe~remit froil
thoseý of Kolionýn 's algori thmn.

INTRODUCTION

One of the most. striking Featuires of the. sensory cortex is the topographical
organiza tion of its aireas. As a result. of this organization, nleighh~oring neurons
code for nieighh~oring p)osit ions ii) sensory space. Models accounting for the
formation of these topology-preserving maps from simple principles of self-
organization hiave heen proposed h~y several an thors [1-5]. Due t~o its inherent
simplicity, the. Kohionen self-organizing map is, the most. successful miodel ill
this series. It, has enjoyed a wvide range of applications (for pairtial overviews,
see [5,6]), and its computational capah~ilities [71 andl dynanmics are thoroughly
stu died and understood, at. least. for the scalar case [6,8-11]. Furthermore, it,
is helieved to offer a rather dletailed physiological inteirpietat ion of topology-
preserving map formation inl cortical seiisory area. [121.

The aim of IKohionen 's algorit~lmii is to est alhlish , inl anl uiisupervisedl way, a
map)ping from a higher (1-dimlensional space V of iiiput, signals onto anl equal
oi lower-d iiiieiisionial dliscret e lattice A of N formal neuriions. To each formial
neuron i c A correspondls a uiiiique weight. vect~oi wi 10l [w..zid] . The
inap assigns t~o each iiipult. v) [?)I, -. . , Mj (E V a unique neuron inl A and this
is accomplished h~y searching for neuron i* whose. weight, ve ctor is closest, to
the current. input, vector u:

11-j. - ?,1 < H1wi - ioH, Vi E A.(I

0-7803-2739-X/95 $4.00 @ 1995 IEEE
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T~O achieve a t opolt gv preserving ilia1ppilug, Incremeintal xWeight adjiistiiieit~s
are perforiin d not1 only of the( winning neuron hut, also of Its neighiboring
neuronis. using- a neighborhood function A:

Awi = iA(i, i* , )(v - wi), Vi C A. (2)

'I'he lcariinig rate q is usually gramlially dlecreasedl over timie I to zero. The
iwiegh hborlood fun Ct loll A Is I for i = r and falls off with (list-4a ce het ween

ai .ad i- i In lt tice coordl in tes. 'I'1w rainge spanunedl hy thle neighhborhoodl
funct ionl decreases-' over tniie until1 only the weight, vect~or of thle winnler Is
ulpdated (WiiirTk-Al YVA ) , and the IKohonen rule is Identical to the
st andaIrd unls'upervised coinpetitive learning rule (standard IJ( ).

Pj hereI~( Ir a ume of proletis withi the IKohionen algorithmi, however.
First ly, a too fas;t decrease of the range spanned by the neigihborhood funlctionl
lealds to topologicall defect's such as kitnks inl (the one-liieneisioial case. and
tv"Ists in tihe tv.o illuniisioiial case [11] whlichi are difficuilt, to Iron ouit, if at,
all1. Secoiidlv, due to this ranige, the error functionl which is minimillzed is
nio loniger quamdraitic since, cg. inl the( onle-diiiieiisioiial Case, tile exponlent,
2 isý rephi ced by ie + w a xi th 7i1 thle nunmber of neighhor neurons"- (21+I)-'+

betý are takenl into aIccouunt onl each side of thle xviminer [I 3]. 'I'liirdlv, Rit ter
and sehliut en [11lij hve shownvi that, also for the one-diiienisioinal case, the
weighlt denlsity is- proport bib

1 to pwith Ii) thle Input, piombaility deinsity
flinci ion (p.djf.) Al l alc~ nap, ideal ill teniils of resource uisage, would have
tOw weight11 density pcoportioinal to 7) (eqiiiprohahle 11ap) and the1 lKolioiiemi
a I golit hni Is iminhle t'o aIchieve t his.

11", thisý art11le iel , a nw lilsulwprvised Cmiipetitive leaIrnling r-tle Is Iintroduced
For tplg-reeiignap foriiat ion. The aim is to achlive with this iiiap
an1 eqll iprohah~lel quan~tization of the inputi space. The rule does not, require
a ueiglhborlloodl function aIs does the lKouoiieii rule and Its manN' variationls.
B itlo r' it a cliieves al globaly-onlmen'eu inn p by perfori i ing local Weight
1i1pulatis only. We~ will coniiuparc Its dyvnaiiics -which is comipletely different-
wviith hit of, thle lKoluoluenl algorit limi. The physiologicail Hiitcrlretlt ion and
th coaiplete formlmlbi~ltionti of thle rulle, will he addressed clsexxhere.

E;Q UIP]RD BABLE QUANTIZATION

( oiisde it 1ýtice A of N foriumil neuironus. 'Fil formial meuiroiis qiianiuize the
in~put soace, V Int partit ion cells or (piamt it ion regions. InI case of thue Ko-
ho01een il-oanrimithelO q11i~latzation regioiis are defined hy eq. (1) and thuis arc

'ix ,xdmJommlt . Ill Our caeu~maitizat oio regoions ice dlefined inl a different
vax ;ni, I i not nlecessar-ily dis"Joint, when thme iinp is iiot, globally ordered

(1Aloel) 'ssnie tunt V' ;iul( 1 have the samiii dimuensionality d and that
coon m no (1S a reguarilm diliiieiusiomual grib with a rect anigular topology. Since

iii tnpuo-y' is r'ct'ani-lmla, t he grid coiisiIst~s of a numbuer of (I-diiueiisional
h v o~ercilbe (inl Icpological sense III termls of grid coordina'tes) and the-se liv-
pcrclhucý ± dflne tie( ulula)ntmizt iou reg-ioIlis. The huypercuihes HIll, 1 ._ Hin
Fig1. IB !I,( so hepuiit i/at loll regionls of' th leBtt ice port oul Shoxxn mul

IPP 1 V( aPP a ia-i lw tl mgiay iyperciihes (unhlonlii'Kd I pliati
sa :oa to ;i)adjalcent to tHie oilter boirdler an3d ver-tices of A:he Bporclub.s



H0 , 1tb, H,,, 1I,1, It are constructed by extending the lat-tice towards inifinity.

The links (full lines) separating the "real" hypercubes (bounded quantizat ion
regions) that, share a common vertex on the border of A, are extended to-
wards infinity (stippled lines). In this way, every neuron j of A is a common
vertex t.o I adjacent. hypercuibes.

A B

Hg, H h H1

H1, HH

H H,.

Figure 1: Definit.ion of quanltizatioii region. (A) Portion of a lattice A with a
rect.angular topology, represented in I space. The bold line shows the outer

border of the lattice. (13) The same portion of the latlice but. with some of
the neurons and hypercu bes labeled. See text.

Following our reasoning, every hypercube defines a quantization region
and a. neuron will be ac(ivaled if the input, v act.iyvates one of it.s 2' adjacent
d-dliniensional hypercubes. We will assume t.hat., p(v) is a cont'inuous pl.f.:
in this way, the boundaries of the hypercubus will have zero area. and hence,
there will be a zero probability that, a single v will act.ivat.e two or more
adjacent, hypercubes unless these hyperciibes overlap.

Given tIha't, we have N neurons iii the grid, we want. that, every neuron is
activated with tlie same. proba.bilit.y N . In other words, we want, to estab-
lish al equiprobable qiianit.izat.ion of the (joint) input p.d.f. (Ill fact, this is
an approximat ion since such a. partitioning may not. exist, for a given input.
p.d.f.) This is achieved by performiiig iterated changes in the weight, vectors
wj corresponding to the vertices of the active hypercubes. An equiprobable
quant.izat ion is then achieved when each neuron is updalcd, and thus ac-
tivated, with equal probability. Finally, since informattion-theoretic entropy
maximization and equiprobable quant.ization are equivalent., our rule is called
Maxiimimi Entropy learning Rule (MER).

MAXIMUM ENTROPY LEARNING RULE

For the sake of exposition, consider again the 2-dimensional case (Fig. i).
There are two ways t o update t he vert ices of an active hypercube. Firstly,
we randoil y select, only one of them, say i*. The weight, vector of neuron i*
is then updat.ed as follows:

Aw;. = ijSiqu(e - wi.), (3)

with ,ign (.) the sign fiuniction. Secondly, a much faster method is t~o update
all the vertices of an active hypercn be, scaled according to the number of
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vertices. A SimiIe t hat the In put samiipie ui G H, (Fig. 2A ). The weight vectors
of nieurons j! k. A. ?1. are 1upd1a itd as follows:

Siqii. w,. ) Vi' G {j, k, 1, ml}, (4)

with nIi i the numiher of veritces of H, ie 4. As a result, of this, neurons
m .1 i will move with a fixed4 step size of III ibothI V-dimensions, towards

vas shown ini Fig. 2A (st ippled h iii ). Similairly, inI uase v) lies ouitsidle the
lattice A, 2 neuirons wvill he upda ted wxith si tep size I if ?, faces the hordier of
A (Fig. 21B) anid I neuron xs iti step s1iz q if it, faces one of the four corners
of' A (Fig. 2(C).

A B C.

11, 0

Figuire 2: U pdate of neiiron welight, vectors as a funict ion of active hypercuhes.
The full ind4 st ippled finies represeitt. the lattice before and after the update
(not, to scale). The current. input. (black (lot) activates hypercuhe H, inside
lhe lat tice (A), or imiaginary liyperciihes II, (B) an TI,, (C) outside the

lattice. The construction of the. imaginary hypercuhes is explainedl in Fig. 1.

InI order to focimonlize ME IR for the geineral Ic-.hiinensioiial case. where we
update every vertex of aii activye hypercuhe, we dlefiine 11111 (u), j -I,..,Q
as the code m embnershti p funct ions of the Q ty percubes of A:{ if I)C 1

kWe assuiiie that. 1(u) Is a. contiinuioiis p. dl. hence, the probabilit~y that. I
falls on oiie of the links equatls zero. Define Si as the set of 2 d hypercuhbes
that have neiironii as ia common vertex. The 1d-(iinjensional MEli rule then
beceomnes:

AWj = q E H1i (u)Siqit (v' - wi ), Vi C A. (6)
jcs,

Proposition 1: The average of eq. (6), with thtle average taken over t he envi-
ronmentt V, performs (stochastic) gradient. descent, onl the cost, flinicthonl

N

E = ZE Z hj,,,(?,) IV - W (7)
i=i jGS,

wvit hi I - wiIdenoting the (per letter) absolu te value of a) - i
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Proof: Following the definition of gradient. descent., the weights are updated
so as to reduce the cost. term introduced by the active hypercube:

OE
<Awi >v= -?I- flHj(v),Siqn(v - wi), Vi c A, (8)

jES,

and the latter exactly corresponds to the right hand side of eq. (6). QED.

Due to the latter proposition, we have that eq. (7) is a Liapunov function.
Furthermore since E is radially unbounded, convergence will hold "in the
large": when wij - co • E - oo, i = 1, ... , N, j = 1, ... , d.

Proposition 2: In the one-dimensional case, MER is guaranteed to converge
on average t.o an equiprobable quantization.

Proof Assunme a 1-dimensional grid with quantization intervals HI, ... , HN+1
separated by the weights 11)1, ... , WN. Due to the existence of a Liapunov
function, we know that MER will converge on average. We have that:

"< Awi >v= 0 =< Hi - H1i+ >v= p(Hi) + p(Hi+j), i = 1 ... , N, (9)

at convergence. If we substitute backwards the His in the equations, then we
observe that the latter all equal the same value. Now since by definition we
have that neuron i is activated when either Hi or Hi+j or both are activated,
the probability that neuron i is activated is simply: p(i) p(Hi) + p(Hi+I).
If we now substitute for the His, we obtain that: 1)(1) ... p(i) ... p(N),
and thus an equiprobable quantization. QED.

We now show that the grid cannot be folded at convergence (kinks).

Proposition 3: In the one-dimensional case, M ER is guaranteed to converge
on average to a. 1-dimensional grid without kinks.

Proof Assume the inverse that a 1-dimensional grid with at least one kink
is a stable solution. Assume that there is a kink at neuron i, hence, the
intervals Hi and Hi+i overlap and are located at the same side of i. This
means that neuron i will only get weight updates in the direction of both
overlapping intervals, and never in the opposite direction. This means that
neuron i will keel) on shifting until the overlap is reinoved. Hence, the kink
at neuron i is not a stable solution. QED.

Since kinks are the only topological defects of 1-dimensional grids, the lat-
ter two propositions also signify that. MER converges to a unique equiprob-
able quantization with p(1) ... p(i) .... p(N) = -L

N
Finally, it is noted that MER in the one-dimensional case resembles our

previously introduced Boundary Adaptation Rule (BAR) [15,16,17]. How-
ever, there is one crucial difference: BAR achieves an equiprobable quanti-
zation in terms of the quantization regions and M ER achieves this in terms
of the neurons themselves. Hence both rules are complementary.

CONVERGENCE- AND DYNAMICAL PROPERTIES

Up to now we have considered globally-ordered lattices to explain our rule.
What happens in case the lattice is tangled and V is quantized by possibly
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compare them on an equal basis. First we will use a fixed but small learning
rate 71. For MER we take 71 = 0.001 and for the Kohonen rule 71 = 0.015
so that. the variance on the weight vectors is of comparable magnitude at
convergence. (This is a compromise since slightly lower 71 values for the Ko-
honen rule lead to topological defects.) The following neighborhood function
is used for the Kohonen rule:

A(i, i*, t) = exp(- 27('i . )2 with or(t.) = t~exp(-2To ) (10)
2,(t)2  

'tillax

where ri and rj represent the lattice coordinates of i and i*, I the present
time step, t  4, 000, 000 the maximnum number of time steps, and o
the range spanned by the neighborhood function at t = 0; o00 = 5 . Due
to this neighborhood function, all neurons are updated at each time step,
albeit with a smaller value as time progresses. In case of MER, only 1, 2 or
4 neurons are updated per active hypercube, and several hypercubes may be
active at the same time.

The simulation results are shown in Figs. 4 and 5. We observe that the
dynamical behavior of M ER is completely different. The Kohonen rule first
leads to a contraction of the lattice (tue to the initially large range spanned
by the neighborhood function. The lattice rapidly untangles and becomes
fairly evenly distributed and then adapts in detail to the input p.d.f. In
case of MER, the lattice gradually adapts in detail to the input p.d.f. as it
becomes untangled. We (to not. observe a comparable initial contraction of
the lattice. Furthermore, we have that. several hypercubes (i.e. quantization
regions) are activated at. the sarne tline and that this number decreases as
the lattice converges to a globally-ordered one (Fig. 6). Notice that for the
Kohonen rule, only a single quantization region wins the competition at each
time step.

The Kohonen rule definitely is faster, however if we comnpare the suri of
all weight. update vector magnitudes performed in ',.. time steps, then the
picture is different,: the sum equals 4'181 for M Elk and 27555 for the Kohonen
rule. A fair comparison would be to shorten t

m...,.. for the Kohonen rule so
that it yields a weight update suim similar to M ER's (i.e. t ..... = 275, 000).
The results for the Kohonen rule are given in Fig. 7. However, we now
observe that, the lattice is twisted. Hence, the range of the neighborhood
function is too rapidly decrease(], given 71.

Finally, we will consider another type of input distribution. In the pre-
vious case the distribution was uniformn within a square, hence, the type of
solution found by both learning rules is the same. We will use a radial distri-
bution of input samples v = (r, 0) with 7 and 0 randomly and independently
chosen within the intervals [0,0.5) and [0,2wr). The resulting p.d.f. has a
radial distribution o( -. We will display the results for the converged lat-
tices (Fig. 8A,B) in terms of the average probabilities that the neurons are
updated over a period of 100, 000 iterations. The average probabilities are
represented as gray scales: black denotes zero probability and white denotes
tile maximum average probability found in both lattices (Fig. 8C,D). We
imnmediately observe that the Kohonen rule leads to a lattice which under-
samples the high probability region at the center (high update probability)
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and oversamples thIn low probability region away from ihe center (low III)-
date probability) (Fig. 8(), as expecteed. Since the input space is almost,
uninf orm ry foiI MER (Fig. 8D), we conclude that MER leads to an almost
equip ''obab jl i quaiiizai o.101)

Figure zI Evolution o a 24 x 24 lat~ltice witli a rect~allpilar t~opology as
a funiction, of" tile III case of die Kohionen mile wit~h Z,...... = 4,000,000.
The outer squares ouitline the unifornm input, p.d.f. The values given below
the• squrtl;c represent t~ime. Not~icec .hat. at. convergenice, Ohw weighlt, vectiors
sýt~d~ille int'o a 11ois-, st.at~e as ;I result, of" t~he vanished neighborhood fuinctioll
ýi 1ýd the fixe:d but small] hlearning rait,( 7j.

S .t->m,,... • - -.-.vrgy -z

''7

41

-MI

F iire 5: ',ohifion in cast of M tE ,. In hserve iiat, lHi w ghit, vhctors stabilize
ilbt-) ona mo fsavortblit the neifo•rlairti ((ftit p. Fif. T u e

W•e ha"(o iinhoduced a new unsup~ervised conmpetit, ive learningl rule forttopo~ogy-l'd or it p iiap s orat u a. on and vector q gteization. The rule, called
Alb .i elds in t equipron s ablt quansa iZailt on of tY ixilie , space. Itis lllorioo f e-
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ture is that it is able to achieve a globally-ordered map by performing
local weight updates only. Contrary to the Kohonen rule, we do not
need a, neighborhood function. Hence, MER is an even simpler rule than
Kohonen's: 1) we only need to update locally, hence only local neural com-
munications are needed, and 2) only one parameter, the learning rate, has to
be chosen. The effect, of the latter is much clearer understood than that of
the parameters needed in Kohonen's rule to specify the neighborhood func-
tion. Especially the choice of the rate at, which the range of the neighborhood
function decreases is often a critical element for convergence [6,11].

Y,,0

780

Figure 6: Number of active hypercubes (quantization regions) as a function
of time. Notice the initially large number of active hypercubes (up to 130!).

Figure 7: Evolution in case of the Kohonen rule with 1
m 275,000.

AA

Figure 8: Radial input, distribution. C onverged lattices obtained with the
Kohionen rule (A) and MER (B). Graphical rendition of the corresponding
average update probabilities for the Kohiorn i rule (C ) aiid MER (D).

103



ACKrIJOWLED GEIMENT

Th~e auathor Is a senior research associate of the N ational Funid for Scientific

IBecsearch (Belpghitii])

REFERENCES

[I1 S. ( irossherg, 'Adaptive paltterl eLaSSifiCatiOnl alild un1Civesal recodinlg: I Pa-
rallul ditvelopminet and ending of neurali featuore detectors,' Biol. ( yhcrii.,
vol. 2:3, pp. 121-1:31, 1976.

[2] C . von dier MIalslbnrg aind 11.1. Wdllshaw, "HIow to label nerve cells so that
thex' cari initerconnect in anl orderly fashion'?," Proc. N at . Acad. Sci. U SA,
vol. 74, pp. 5176-5178, 1977.

[3] 1K. J. Overtoen and NI.A. .Arhib, "Tire branch arrow mo0(1( of the form at ion of
retino-tectal connect ions," Biol. ( yberni., vol. 415, pp. 157-175, 1982.

[4] T. Nl~oionen, "Self orgaiiizetl format ion of topologically correct feature inaps,"
Biol. (N'yV ii vol. 4:3, 59-69, 1982.

[5] T. l~olioieii, 8 df-01ganiizationi andt associative iliiellor\', Berlin: Springer,] 989.

[6] II. llittei, I. SIN rtiniiez aiid NK. Schulten, Neural computation and
self-o (gini hog inaps: A\i iiit~rodlictioni, Readiiig, Mass: Addison \Wesley, 1 992.

L7] 11. hitter and( 1. Schlulteii, IKolmonen's self-organizing inaps;: Exploring their
co:pi tatjolint c tp bilit ies," Proc. IFIE F Indt . ( oiif. 00l Neural Net works, Sain
Die~go, 1 988, vol. 1, pp. 109t- 116.
11I. Bi tteur anld Is Sch 3ltei ('( ,Convergenice propert ies of Iý ollionen's t opology coni
serving mapsý: Flictiatioiis, stab~ility andl dimen(Ision seclection," Biol. ( ybern.,
vol. 69, pp. .59-71, 1988.

[9] MI. ('ott ell 011(1 J . (. Fort, "A sitochast ic: inode of ret inotopy: A self-organizing

procc ss," Biol. ( yhern., vol. 5:3, pp. 405-411, 1986.
[i . T.M. llesý,ks, and B. INappemi, "Error potcnitials, for- self-organizationl,"

Proc. IEEE Indt . ('on f. onl Neural Net works, San Francisco, 1993, pp. 1219-122:3.
[11] T (h.~ i Phy~sical miodels of ineuiral iiet~works. Singapiore: World Scienitific

Pre~s, 1J990,
[2]1 T. oloiwnei, 'lPlivshogical iiit('rjretatioll of the self-organlizing 111111) algo-

riiihmiii Neu ral Networks, vol. 6, pp. 89t5-9t05, 1993.
[13] II1. Ritte(I "Asviiipt otic level tleiisi ty for- a class of vector (quant1izat ion pro-

>sc ss IEEE Trans. ojii Neural Netwoiks,, vol. 2, nmo. 1, pp. 473-175, 1991.
I14] 11. Rit tr iand NK. Scliiltun, "Oii tlie stationiary state of INolionien's self-

or ganizinig sensory miappinig,' Biol. C yhern. , vol. 54, pp. 99-1061(, 1986.
[15] M1 MI Vaii Ulidil arid f. Mtar tine-i., 'O(mi. a nove l insiipervised coiipe'titive

Fan illn ilgorit lii for selrutanitizationl, IEEE Traims. oii Neural Networks,
vot. (3), pp. 498-501 , 1994

LI6- MSM VIN iBill)e111 aiid 1). NI artiiiez, "On an unsupervised learning rule for sealar
(ilialit uization following thle, imxiiiimiii eut ropy p)riinciple," Neural ( 'nipultatioii
vol. 5pp. 939-9,53, 199:3.

[171] D. NI tilie anud I. NI. Van u llI 11, ''( 1('iralizedl Bounidary Adaptation Rule
01ioimooizii11mig r-tli pov law dlistortioii in tlie high resoliition ca~se,"
Neural Networks, 1995, in press.

I104



A Self-Organizing System for the Development of
Neural Network Parameter Estimators

M.T. Manry
Department of Electrical Engineering

University of Texas at Arlington
Arlington, Texas 76019

I. Introduction

The design an optimal neural network estimator from training data is
difficult because (1) the required complexity of the estimation network is unknown,
(2) existing training algorithms for multilayer perceptrons (MLPs) are inefficient,
in terms of training time and use of free parameters, (3) existing bounds on neural
network estimation error assume noiseless inputs and are not practical to calculate,
(4) there is no generally accepted procedure for finding the best subset of input
features to be used in optimal estimation, and (5) a method for automatically
developing optimal estimators from training data is not available.

In this paper, we describe a methodology for attacking these problems.
In section II, we describe three separate processing blocks which attempt to solve
problems (1), (2), and (3). In section III, these blocks are then assembled into
larger compound systems or blocks which attempt to solve the remaining
problems. Examples of multilayer perceptron (MLP) estimators, designed using
the proposed system, are given in section IV.

II. Algorithmic Building Blocks

Building block algorithms have been developed for (1) determining an
estimator's required complexity or size from training data, (2) efficient training,
and (3) calculation of Cramer Rao lower bounds on estimation variance from
training data and a signal model. These blocks are discussed in the remainder of
this section.

A. Complexity Estimation

Several facts make complexity estimation possible and worthwhile; (1)
training of a nearest neighbor estimator (NNE) is almost an order of magnitude
faster than MLP training algorithms, (2) once trained, the MLP can be applied to
data one or more orders of magnitude faster than the NNE, (3) an MLP can
closely approximate the performance of a NNE if it can memorize the NNE's

0-7803-2739-X/95 $4.00 © 1995 IEEE
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cluster vectors, and (4) a one-output MLP can memorize as many patterns as it has
free parameters [1] (its complexity). This result is a great improvement over the
much lower bounds, related to the number of hidden units, that are given in [2].

As a first step in the complexity estimation algorithm, we iteratively train
an NNE through clustering of the input vectors. These clusters, and their
associated outputs, constitute a reduced-size training set similar to that described
in [3]. In [3], however, the input vectors are required to be noiseless, useless
inputs are not rejected, and there is no theoretical relationship between number of
chosen patterns and MLP network size. Second, the required complexity of the
neural net to memorize the clusters is determined. As the number of clusters
increases, and the performance of the NNE improves, the predicted complexity of
the MLP, required to attain the error performance of the NNE, also increases.
Picking a suggested network configuration from complexity estimation is one or
more orders of magnitude faster than actually training multiple MLPs. Details of
our algorithm can be found in [4].

B. Efficient Training of Estimators

1. Moftivlation

Current MLP training algorithms, such as output weight optimization
(OWO) [5], conjugate gradient (CG) training [6], and backpropagation (BP) are
not capable of training the MLP up to its maximum potential in a reasonable
amount of time [1]. Consider a MLP with structure 8-36-1 (8 inputs, 36 hidden
units, and I output), which is trained to memorize varying numbers of random
patterns, using BP, OWO, CG, and a method in which an 8-variable 3-rd degree
polynomial or Volterra filter is trained and then efficiently mapped to the
sigmoidal MLP. This
mapping procedure first
maps the Volterra filter to
a polynomial network in
which most of the units 0.2

have third degree
polynomial activations of 015-

the form ax2 + b x.
where x denotes the net 0.,
function. Second, each
polynomial unit is 0 P
replaced by a single
sigmoidal unit, with some CG
changes to the weights of 5 ... .. ,5 0

course. This second step Number of patterns

is possible because the Figure 1. Training Error versus Number of
ratio S"(x)/S'"(xf), of the Patterns for Four Training Algorithms
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sigmoid's second to third derivatives, is continuously variable between -oo and
+ oo. In Fig. 1, the networks' mean square training errors are plotted versus the
number of training patterns used. Here, OWO and CG perform better than BP but
lag far behind the mapping method, which leads to very parsimonious networks.
Clearly, existing training algorithms can be improved if they can be given the
capability of precisely adjusting S"(x)/S" 'ft).

2. Training Algorithm

Motivated by the previous example, our basic training approach consists
of (1) training a polynomial-activation MLP via OWO [5], (2) converting it to a
sigmoidal-activation MLP, and then (3) training the sigmoidal-activation MLP via
OWO. The conversion to sigmoid activations is done because the sigmoid function
is bounded, sigmoid activations can mimic polynomial activations of degree much
higher than three, and the performance of the converted network is theoretically
as good as or better than that of the polynomial network. Consider the polynomial
activation function,

P(x) = a x 2 + (1-a).x 3  (1)

where x denotes the net function. We want to approximate a polynomial unit,
having activation P(x), by a sigmoid-activation sub-net having the activation

PS(x) = d + wb x + w.S(c + wox) (2)

This sub-net is shown in Fig. 2.
Let m. and a. c d

respectively denote the mean
and standard deviation of the X w, S O P, (X)
net function x. Let y. and oy Y
respectively denote the mean
and the desired standard
deviation of the sigmoid's net Figure 2. Sigmoidal Equivalent to 3rd-Degree Unit
function y. The weight wi is
found from wi = ory/ox. Then
y. = wimx+c. Equating P"(x)/P.'(x) to P."(x)/P.'"(x) at x = m., we get

a ~3S11 (y)a - -3m + - (3)
1-a w:S"I (Y)

We can solve for y. by the Newton Raphson method. Then c can be obtained from
c = y0 - Wimx. The remaining weights and threshold are easily found.
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organizing estimator.

A. Signal Modelling

It is possible to find a statistical signal models from training data, given
that the mapping or estimator is injective and that the inputs and outputs have the
appropriate statistical variation [8]. A mapping is injective if only one input vector
maps to each possible output vector. Given the training patterns we want to find
the signal component model and noise pdf. We make the following assumptions.
(Al) The exact signal model is xP = sp + np.
(A2) The elements Op(k) of 0, are statistically independent.
(A3) The noise vector n has independent elements with a jointly Gaussian pdf.
(A4) An expression exists for s in terms of 0.

The signal model of (Al) can be rewritten as x, = s1p + n', where sp'
and iiP' denote approximations to sp and nP respectively. The calculation of sp' and
np' are described separately. Assume that the nth element of the approximate
model sp' is represented by

L
/s '(n) a -a pTk (5)

k=I

where a, denotes the coefficient of Tp(k) in the approximation to s(n), and where
Tp(k) is the kth basis function calculated from the desired pth output vector Op.
Tp(k) can represent a multinomial function of parameter vector 0 in a functional
link network, or a hidden unit output in a MLP. In practice, because of the
capabilities of the MLP for approximating derivatives [11,12], a neural network
would be the first choice for sp'. The error between xp(n) and its model is
measured as

E (n) E I [x(n) - s(n)]2
E n = p=I

The model is determined from the noisy data by setting the partial derivativeN as;(n)

En(n) = 2 n)_s'(n)] + (n)

aa s Fa- ý

N a
ek 2 3t n(n) Sp (n)

equal to zero. Using the facts that

asp (n) 2
Oa,, T (k), E[nf(n)nq(n)] = ab(p-q)

the mean-square of the noise term e,, is evaluated as
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N4 N N,

Efe& =2 E[n p(n)n q(n)]T(jk)Tq(k)
pq=1

4o 2 
Nu 4UE. E.k)

= j' P~ S Pk) N,N,= p=a

where ED(k) is the average energy of the kth basis function. Note that the mean-
square error goes to zero in the limit as the number of training vectors increases.

Given a model si' for the signal component, we model the mean vector

and covariance matrices of the noise component as

N

= n (x -K-nt D,, - IS ,
P=l

C/ / / T

N, p pp=!

Next, a reasonable pdf for the parameter vector 0 is determined. We
determine an approximate Gaussian pdf for 0 by estimating its mean vector and
covanance matrix from the desired outputs, OP, in the training data file. Since
equation (5) represents a MLP or Volterra filter, our Signal Modelling block uses
the complexity estimator and efficient training.

B. Far~ e Selarlio

In theory, estimation performance improves as the size of the observation
vector a increases. In practice however, larger observation vectors are not
desirable because of (1) the longer training times required for the estimation
algorithm, (2) the increased time necessary to apply the estimator to data, (3)
instabilities or poor performance of the estimator because of linear dependence of
elements in the observation vector, and (4) increased expense required when more
observations are taken (extra weight of the sensors, extra money required for
development). Therefore, it is useful perform feature selection, which is the
process of finding useful subsets of the available observation vector % which lead
to good estimator performance.

A methodology for comparing inputs, in order to determine their
optimality relative to each other, is given in [7,8]. Feature selection requires three
blocks. These include the signal modelling and bound calculation blocks. In
addition we need a conventional subsetting block. The subsetting block will merely
add features to the subset which most reduce a weighted sum of the MAP bounds
on parameter estimation error variance. Features at the top of the list are the most
imrortant ones.
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C. Self-Organizing Estimator

The Self-Organizing Estimator that we have developed requires three
blocks. These are feature selection to find a good feature subset, complexity
estimation to determine which size MLPs to use in signal modelling and in the
final estimator, and finally efficient training. The feature selection calculates the
Cramer-Rao MAP lower bounds on estimation error variance, which can be
summed to form a lower bound on the estimator's training error. Our efficient
training algorithm halts when the training error approaches the bound.

IV. Examples

As a first example, we chose the task of inverting the surface scattering
parameters from an inhomogeneous 0.32

layer above a homogeneous half- 0.31

space, where both interfaces are 0.3

randomly rough. The parameters to be 0.29

inverted are the effective permittivity 0.27

of the surface e, the normalized rms 0.21

height ko (upper surface kol, lower 0.25

surface ka 2), the normalized surface 0.24

correlation length kL (upper surface 0.23-
0.22

kL,, lower surface kL2), where k is a 20 ,0 60 80 100

the wavenumber, the optical depth -r,

and single scattering albedo w of an Figure 3. Training Results for Example 1.
inhomogeneous irregular layer above
a homogeneous half space from backscattering measurements [13,14].

Table 1. Bounds and Training MSE for Example 1.

Par. e ka, ka2  kL1  kL2  r

Bound 9.85 x 8.52 x 2.43 x 4.02 x 1.97 x 8.85 x 6.24
10-3 10-1 10-1 105 10-2 10-3 x 10-7

MSE 1.125 x 8.7 x 1.65 x 1.08 x 2.19 x 2.48 x 8.01
10 .2 10- 10-1 10-4 10.2 10-2 x 10-8

The training data for the MLP network contained 1768 patterns. The
inputs consisted of eight theoretical values of backscattering coefficient parameters
e" at V and H polarizations and four incident angles (100, 300, 500, 700). The
outputs were the corresponding values of e, kau, kao, kL,, kL2 , r, and wo, which
had a jointly uniform probability density. The self-organizing estimator (1) chose
a signal modeling MLP with the structure 7-24-12-8, (2) generated the seven
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bounds on the estimation error variances shown in Table 1, (3) chose the MLP
structure 8-25-7 for the estimation MLP, and (4) had the training errors shown in
Fig. 3 and Table 1. In the figure, training errors are plotted for the new procedure
Tor ac. = 1.0 and for a sigmoid network initialized with random initial weights.
The discontinuity in the new procedure's error curve dissapears when ay
approaches 0, but training is difficult for that case. From the table, most of the
parameters' training errors are slightly greater than the corresponding bounds, as
one would erpect.

The second data set has 16 inputs and 3 outputs and represents the
training set for inversion of surface 1.6

permittivity c, the normalized surface
ims roughness hoa, and the surface
correlation length kL found in 1.2 sP

backscattering models from randomly
rouch dielectric surfaces [15,16]. In
contrast to the first data set, no .
volume scattering related parameters o.M

cre considered. The first eight of the 00.4

si'týen inputs represent the simulated o 20 14 1 80 100

backsuattering coefficient measured at
10, 30, 50 and 70 degrees at both Figure 4, Training Results for Example 2.
vertical and horizontal polarizations.
The remaining eight are various combinations of ratios of the original eight values.
Tlres ratios correspond to those used in several empirical retrieval algorithms.

The training data for the MLP network contained 10,000 patterns. The
self-organizing estimator (1) chose a signal modeling MLP with the structure 3-15-
8-16, (2) generated the three bounds on the estimation error variances shown in
Table 2, (3) chose the MLLP structure 16-40-3 for the estimation MLP, and (4) had
tlh traininm errors shown in Fig. 4. and Table 2. In the figure, training errors are
plot•-ed. for the new procedure for c, = 1.0 and for sigmoid networks initialized
vwitsh randon•o initial weights. The use of the polynomial network gave no initial
arvamtage for this data set, unlike in the first example. From the table, all of the
p m r•ne'os' traim'rn eru-s are greater than the corresponding bounds, as one
vno>ud p'-'- . Clerrlv, the MLP has oroblems estimating !a.

'o7: 2. =:u 7T EiTrnin PA11SS for-hr'l 2.

Pa1aml-,e k [ kL

3cu0  232 10.6 5.77 T 10' [ 6.53 x 10'

IS 4.68 i 10-L 7.34 x 1i0-'
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V. Conclusions

In this paper, we have descibed a self-organizing system for generating
parameter estimation networks. Given a set of training data, the system produces
a statistical signal model for the input patterns, finds bounds on the training error
for each desired output, determines a good network structure using a complexity
estimation algorithm, and trains the estimator. The system was demonstrated on
two remote sensing data sets. In both cases, most of the final estimation network's
outputs had training errors greater than the corresponding bounds.

Much work remains before the system described here can be made widely
applicable. The theory behind the complexity estimation algorithm needs to be
fully developed. The efficient training procedure is not always better than other
available training approaches, and must be improved. The extension of the bounds
to the case where the desired mapping is non-injective will be necessary before the
system can be applied to prediction and control problems.
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Abstract

We studied a possible role of a simple neural network oscillator as

a neuronal classification unit of oscillatory signals. The neural oscilla-

tor, composed of two mutually inhibiting types of neuron with adaptive

property ill one neuron, is fed by periodic inputs of varying amplitudes,
frequencies and phases. Using a performance measure defined in the

frequency domain, we showed that the neural oscillator was able to ac-

curately recognize the spatioteinporal content of the oscillatory input

without any information loss. The simulation results demonstrated that

such a neural oscillator may exhibit marked changes in its spatiotemporal

pattern (e.g., trajectories of neuronal activities) in response to changes in
the oscillatory input. Under a strong entrainment condition, the network

could differentiate small changes in the frequency of in-phase inputs by

displaying profound changes in both the waveforms and relative phases

of the neuronal activities. Similarly, changes in the phase relationship
of the oscillatory inputs are manifested as significant changes in the am-

plitude of neuronal activities. In this manner, the frequency, amplitude

and phase of the oscillatory inputs may be represented (and possibly

classified) in terms of the corresponding spatiotemporal pattern of the
neural oscillator. The results suggest a plausible mechanism for the clas-

sification of oscillatory signals in biological neurons without the need for
any quantitative measurements, and the feasibility of such a simple neu-

ral network architecture as a building block for oscillatory information

processing.

1 Introduction

Stroage, retrieval and recognition of spatiotemp oral patterns in oscilla-

tory neural networks have been studied extensively under the Hebbian

learning scheme (Amit et al., 1990; Wang et al., 1990; Schomaker, 1992;

0-7803-2739-X/95 $4.00 © 1995 IEEE
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Poon, 1993; Matsugu & Yuille, 1994), the extentions of backpropagation
scheme (Williams & Zipser, 1989; Doya & Yoshizawa, 1989 ; Rowat &
Selverston, 1991; Toomarian & Barhen, 1992 ; Lin et al., 1992; Sun et
al., 1992; Simard & Le Cun, 1992), the variational scheme (Pearhmutter,
1989; Bersini et al., 1994; Sotelino et al., 1994), and generalized matched
filtering scheme (Hecht-Nielsen, 1991).

However, it is still largely unclear how biological systems effectively
process oscillatory signals, and how information encoded in the spa-
tiotemporal activities of neurons may be decoded in the brain.

It has been suggested that a periodically driven neural oscillator is
functionally equivalent to a heteroassociative memory in that the unique
spatiotemporal activity pattern induced by the periodic source represents
a form of information storage (Matsugu & Poon, 1993).

In this paper, we propose another useful function of neural network
oscillators: as a classifier of unknown periodic inputs (e.g., detecting fre-
quency, phase, and amplitude), a function that cannot be subserved by
conventional (non-oscillatory) neural networks. The emergent neurody-
namics in response to sinusoidal inputs revealed that the trajectory in
the state space of neuronal activities could serve as an indicator of spa-
tiotemporal information content (i.e., frequency, phase, and amplitude).
We propose a performance measure that approximately gives the infor-
mation loss during the classification process. The results demonstrate
the feasibility of a novel scheme for oscillatory pattern recognition using
oscillatory neural networks.

2 The Network Model

A minimal network model of physiologically plausible rhythmogenesis
(Fig. 1) is composed of two mutually inhibiting neurons: I and E, (Duf-
fin, 1991). A virtual interneuron F, which provides negative recurrent
feedback for the I neuron, accounts for the adaptation properties of the
I neuron which lead to its decrementing activity during a burst (Mat-
suoka, 1985). The inputs driving the I and E neurons originate from a
source D.

The feedback neuron F can simulate the adaptation effect in neuron I
without causing self-induced oscillations provided the following inequal-
ity is met (Matsuoka, 1985):

(TF - T1,E) 2 > 4TFTI,ECF

where TF is the time constant for neuron F (1.5 s), TIE is the time
constant for the I and E neurons (0.08 s) and CF is the connection
strength from neuron F to neuron L

The equation describing the activity of any neuron i in the model is
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(Dumbn, 1991):

d..1Ti-dx- + xi = Ri + ECijg(xj - Hi) + Si (1)

where xi is the current activity of the ith neuron; Ri is its resting activity
(-10 for the I and E neurons, 0 for neuron F); Hi is its threshold (0 for
all neurons); Cij is the strength of the connection from the jth to the ith

nieuIron; and g(z) is a nonlinear function (e.g., g(z) = maax(0, z)) used to
model the activation threshold for the model neurons.

For simplicity, the inputs to oscillator neurons I and E from driving
source D (denoted SI and SE, respectively) are assumed to ibe of the
formn:

S1,E = AI,E sin( 2 7rfEt + OkE) + DCI,E (2)

where DC is the steady component and A, f, 0 are respectively the
amplitude, frequency and phase angle of the sinusoidal component of
the signal to the I or E neurons (with corresponding subscripts).

Sinusoidal inputs to the I and E neurons are said to be in-phase or
anti-phase if f, = fE and 01 - OE = 0 or 180 deg respectively (Cohen
et al., 1992; Cyiiibalyuk et al., 1994).

3 Classification of spatiotemporal contents

In order to gain some insight about the ability of the simple neuronal

classifier, we propose here a provisional measure of its discriminatory
power, given the data set of input and output (i.e., induced activities of
neurons) patterns.

To be specific and for practical reasons, we will measure the spa-
tioteml)oral contents of total neuronal activities and oscillatory inputs
given by the state vectors Qj,,, Qott respectively,

Qi, .= 'u (b7 l'',bou bHout )i7q i ...... = W 17 I...' b2 .... , .. .. . , ) w,

where i = ,V * Al, and N is the number of coml)onent neurons (mutually

inhibitory neurons; i7 = 2 in a minimal model), Al! is the number of bins,
and b'", by"' denote frequency bins, for inputs and outputs respectively,

in the frequency domain partitioned from (mi - 1)S to m6 with in =
[(i - 1)/N] + 1 ([.i] desigiiates taking the integer part of x),

irlout ini utuoft

bi = (m )5 (f ) df, (3)

where G" '(f) represents the spectrum (e.g., amplitude, phase spec-

trum, or else) of the input and outlut at the j th neuron (j = [(i -
1)/A1] + 1), respectively.

117



'We define a state vector, (57Ot", bu" ' . o, T which is. for
activity of neurons (i.e., mutually inhibitory neuroins, I and E), approx-
hintei tiv unique to the spatiotemporal contents of the neural network.
Thus, with appropriate dimensionality -11. it can be useti to measure the
volum11e of oscillator patterns realized by the system. The performance
Measure C1 (hiatsiigu ,k Poon, 1993) is then.

C', =

S. Qo,,, . (4)= . .. ,.Q,. db, ... db" 4

where V,, 1 0,t are the volume for inlput and output realizations re-
spectivelY. defined in the multidinensionai hyperspace that specifies the
state vector Q.

It shI iould Ibe iioteld t lia each volume is measured only for stable oscil-
latio0 patterns. Il practice, it is very difficult to perform the integration

to obtain the estiilate of volimije. Insteadi we al)proxihiiate it by first
reiMliepi1g each state vector into a lattice space, which is simply given

ti) discretizillg the original hyl•erspace in units of certain normalization
factor. L. That is. we divide each real valued component bi by L and

teke a nearest integer value, which yields a lattice point. Thus in the lat-

tice space, state vectors (B1 .2..... B,, ) are given by Bi [bi /L]. where
de (he•otes the nearest initeger part of 7. Obviously. the larger L conies

vwith less accurate estimate of the volmne occupiled by given realizations.

The lumbier of remapped points in the state space gives a rough
Mileasuire of total diffirent realizations in the system's response. Thus

the peferfilanee miieasure. the ratio of iliIlt and output volumes in the
state space of spectrum domain, is intemlded to give a loose measure of
(1iscrilnmiiietiom iower for the oscillatory neural system by comparing the
11111111w)r of difl'remir po.ints for input signals and outpitl activities.

4 esiilts

4.1 EP ergent neurodynamics in a network oscillator

U sing a sillimsoidally varying driving source D (-4 =, A0., = 50) with
the drives to the I and E neurons in-phase (r,' - 061 = 0; f = fE),

amld DC1 /DC' = 0.8(DC1 = 50), we examined the oscillation patterns
of the mod0el at varying sinusoidal driving frequencies. The patterns of

osit ithx, ei are displayed as limit-cycle trajectories by plotting E lleliroln

activity verslus I mmeironi activity ili the phase plane (Fig. 2). For driving

fe itueties from 0.15 to 2.0 Hz. each neuron of the model was totally

(1:1) eeitrained to the driving frequency but the limit-cycle trajectories

exviibited a progressive tremisformation with drastic changes in character

as the driving frequency was varied (Fig. 2 (a)). At driving frequencies
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between 1.5 and 2.0 Hz (i.e., approximately 5 times the spontaneous
frequency) the limit-cycle trajectory was a simple loop with the major
and minor axes pointing in the horizontal and vertical directions, re-
spectively, indicating that the I and E neurons were nearly 90 deg out
of phase (i.e., somewhat between in-phase and anti-phase). Thus, in
the in-phase input configuration the I and E neurons were entrained to
the periodic input with differing phase shifts. As the driving frequency
was decreased toward the spontaneous frequency, the limit-cycle trajec-
tory deformed continuously until, at a frequency of -1.2 Hz, a cusp was
formed which gradually turned into a twist when the driving frequency
was decreased to 0.8 Hz (i.e., approximately 2 times the spontaneous
frequency).

At lower driving frequencies, the limit-cycle trajectory again de-
formed continually until at a freequency of -0.43 Hz (i.e., near the spon-
taneous frequency) the twist disappeared and a simple loop returned.
As shown in Fig. 2 (a) at f < 0.5 Hz the major axis of the loop was
tilting to the left indicating that the oscillations of the I and E neurons
were anti-phase, unlike the in-phase input. As the driving frequency was
decreased still further, a cusp re-appeared at -0.33 Hz and was fully de-
veloped as the driving frequency fell below the spontaneous frequency.
The amplitude of the entrained oscillation remained relatively stable at
low driving frequencies. However, at driving frequencies above -1.0 Hz
the amplitude decreased progressively with increasing drive frequency.

For stronger periodic inputs, the entrained rhythm was less suscep-
tible to magnitude attenuation and/or harmonic and phase distortions

(phase angle between I and E neuron activity < 180 deg) when the inputs
were anti-phase than when they were in-phase.

Using the same sinusoidally varying driving source D except that the
inputs to the I and E neurons were anti-phase (01 -4'E = 180deg),
we examined the oscillation patterns of the model at varying sinusoidal
driving frequencies. Over the same range of driving frequencies (0.15
to 2.0 Hz) the amplitude of the entrained oscillation was significantly
greater than that resulting frlom the in-phase inputs.

The maximum response occurred at a driving frequency of -0.6 Hz
and the response decreased rapidly with increasing departure of the driv-
ing frequency from the optimal frequency. At all driving frequencies
the limit-cycle trajectory remained relatively stable without appreciable
changes in character (i.e., appearance of twists and cusps and changes
in phase angles between the I and E neuron activities) as observed for
the in-phase inputs (Fig. 2 (b)).

4.2 Estimation of performance measure

The proposed perfomance measure for decoding of oscillatory signals
(eq. 4) is dependent on the dimensionality of the hyperspace which is
determined by the lattice size and the width of the partitioned freequency
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ranlge.

To investigate the effect of the (Ilu iiiensionali ty oil the residitm esti-

lliat I. we calcultar ci the performance measure using varying values of
L and i. A limited frequeiicy range (from 0.15 to 2.0 Hz) of nii-lphase
Inpu ts with sufhicieiit amiplitude was used to ensure 1:1 entrainmient of

till oscillator Olt jplt.

Figure 3 shows thle perf~ormiance mneasulre estimate(I from tihe amjpli-

tulde spectra for vary, ing lattice sizes. L, (6: 0.2 Hz, unbroken linle: 0.4
liz. lbrmkeli linec). It indicates anl asymptotic performiance mecasure of

approximiat ely omie(. Tw~o points should be iiotetl. First. the information

coiltellt of the iiijpmmt sigrmmll is reflected ill tihe ouitpuit spatioteniporal pait-

t Orll. Second. the plerformnance measure is not criti( ally (lelpenident oil t

or the lattice size nised inl the simu 1 lationl.
However, it wais found that if time amlplitulde of tihe ill1)mit siginal is

less, than a cert aiii level. (quialit atively dlifferenit behaviors emnerge: time

nietwork ilemirolis oscillate with anl illtermnediate frequency betweeni the
imlllilt frecqiemicv amid the initrinisic frequency. If tlie lilp 11 amptlnllitud~e or

complhiiig strengt)hs to timeilililits are too simmall Compiiaredl with thileitrinsic

(lsclltll (i.e.. 5j1 olt lileols oscillation~ under DC inllits), time frequenicy
conlt ents of thei resmiltiiig osciilatioli would( lbe very simiilar to tile initrinlsic

oiles. Ill thlis case. regardless (If anly clmaiiges Ini the inlput, tile (iltillit wvill

reollaili close toi the lintriiisic oscillationl aii(ii[tie plerformlanice mneasure as

derimied iii Section 3 will be quilte different fromm that, resulting from the
"Ysvlemn withi st romig illil~lts.

Oh o islv for thnllt, at er case, thme est immatedl llefoi'iiilicf imeasu re will
hec fl11p less' tliami lillity.

Tihe~l ir plmrll(Is of' this study was toI explore the ilossibihity of uis-
in1; a il 511lplu ililirll iietwork oiscillator to recognize and classify periodic
signal>. Despite thle simmqlicitY of the iietwork architectuire, tile resultimig

p erforuisnec mlewaslirl (Fig. 3) applrolachied uliitv for sinlll lattice size
S1133 estmilg the lpossil nlitv of classifying (oscillat ory pat terns Without sig-

111 ( ilt A1 Ifiirmitr innl loss evenl with a shmliple oscillatory lienral nletwork.

Th preeil stnldv suggests a novel schemle of classifying oscillatory
-1'11(1' thait illigIlt he eillllovedl ill1 biological lltilal iietw(Irks Žand( mlay

Is be 11>efill for simi11lar siglial jprotessilig, tasks withi artificlial nleural

71 etioiks.
01i.resulr> showe'd that anti-phaseimllpIlts genlerally result eihill stroiig ei

1ii n1 i ' stihllie olitfots than ill-lplase iipljit's vvitli simila~r driving Coll-

diti1111]>Thiis behilvi~lo cami be ilitititively deduhced by coiisidering- that
the I" (11115t-lllltagilglist[ hpnt t 'ii of allmti-phlase imlilats is iiitrillsiclllly iiioie
I(gcjilnlille w-ith iietwork oIscillaltionm ill reciprically imllillbitinig lelillimls.

1n~ is si 'est byli pi fet that time critical ampillituide hor en1traimnent
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is lower for anti-phase inputs than for in-p1hase inputs (Matsugu, Duffin,
and Poon, 1995).

The entrained oscillations induced by periodic inputs with varying
informnation contents (i.e., frequencies and phase relationships) exhibited
a wide variety of emergent neural activities (Fig. 2). characterized by
dramatic deformnations of output trajectories resulting in mnarked changes
in the frequency contents of the output.

Ill the present neural oscillator model, the region of highest sensitivity
(where profound changes in the trajectory occur) is centered around 1.0
Hz for oscillatory in-phase inputs (i.e., a frequency range from 0.7 Hz
to 1.2 Hz). By appropriate scaling of the network time constants and
connectivities, one may move this active region to anywhere within the
spatiotemporal hyperspace.

It is interesting to note that the amplitude of the entrained oscillation
inay serve as an indicator of the input frequency as well as the phase
relationship of the oscillatory input to individual neurons.

Similarly, the presently denlonstrated complex modulations of the
entrained oscillation waveform by varying frequency contents of the in-
put may be useful for certain oscillatory infornmation coding/decoding
tasks. Such dynamnic transformation of changes in oscillatory pattern of
the input into changes in output trajectories may suggest another po-
tential use of the oscillatory unit in the generation of complex motor

patterns in locomotory or kinematic systems, in contrast to pirevious
work (Ermnentrout & IKoppel, 1994) which focused on obtaining a fixed
desired phase difference.

It is also tempting to combine the p)resent oscillatory unit with a neu-
ral system that could classify( distinct trajectory patterns (Sotelino et al.,
1994; Still et al., 1992; Hecht-Nielsen., 1991) so that the composite sys-
tem would recognize the temploral information content of the oscillatory
inputs. Another way of constructing a similar system is to use a group
of such oscillatory units, each being tuned to differing frequency regions
of interest (where trajectories deforin maximally in response to changes
in input frequencies or phases) in the spatiotemporal hyperspace so that
tie population dynamics of the unit oscillators would encode certain
features of the telil)oral input patterns, somewhat like those in popu-
lation coding schenies in the mnotor cortex (see for example, Lukashin
&- Georgopoulos, 1994; Sanger, 1994). In this regard, the present study
suggests that a wide spectruln of trajectories may be realized by a small
number of neuronal groups which are excited by inputs with differing
spatiotemnporal patterns.

A possible future direction of oscillatory l)attern classification based
upon such neurodynamics properties is to explore the abrupt transition
between distinct entrainment conditions (i.e., from n : in to n' : In'
phase-locking mode) in response to changes in the inl)ut. The idea is
to construct a system comn)osed of neuronal oscillators like the one in
Fig. 1, but having different resonance structures (e.g., different structure
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of Arnold tongues5) where each phase-locking zone would corresp~ond to
different inpuit categoriels.
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Fig. 1 The oscillatory network model. I and E denote
mutually inhibiting neurons, 1) Is the oscillatory source,

F designates a virtual neuron which accounts for
adaptation of I neuron.
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(a) In-phase inputs (b) Anti-phase inputs
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Fig. 2 The phase trajectories of the activities of I (abscissa) and E (ordinate)
neurons. (a) The trajectories corresponding to in-phase Inputs vary
significantly with input frequncy. (b) For anti-phase Inputs, there is no
appreciable change in the trajectory.
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Fig. 3 The estimated performance measure of the model network under
in-phase Inputs with entrainment condition. With decreasing
lattice size (see section 4.2), the measure approaches to a unit
value. The result suggests that the network could recognize the
oscillatory signals without critical Information loss.
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Abstract - The concept of classification using principal features is
presented. The principal features defined in this paper are analo-
gous to principal components in statistics and linear algebra. Neu-
ral network training can be done by sequential identification of prin-
cipal features and corresponding pruning of the training data. Two
neural network simplification algorithms, lossless and lossy simpli-
fications, make the the classifier design more efficient. The design
procedure is compared with other classifier design algorithms.

1 INTRODUCTION

Principal Feature Classification is based on a sequential procedure for find-
ing principal features. This is analogous to a method for sequentially finding
principal-component basis vectors. One can first find the principal-component
vector which provides the best single vector for use in least-squares approx-
imation of the set of training vectors. Then one removes the contribution
of this principal component from each training vector to force a modified
("pruned") set of training data. The procedure is then repeated to obtain
the second-best principal component and so on, from the sequentially pruned
training data.

Successive determination of principal features and the associated, succes-
sive pruning of the training data are naturally different than the analogous
steps for principal components because the criterion, namely improvement in
classification performance, is different.

In each stage, motivated by a multiple-Gaussian-component model for
the probability density of a vector observation from any class, linear and
nonlinear discriminant analysis is applied to find current principal features.
The training vectors which are sufficiently well classified using these features
are pruned. In the next stage, the design again applies linear and nonlinear
discriminant analysis to the residual, unclassified training data set to find
new features until the training vectors are classified at the target level of
performance, which is chosen to permit good generalization to the test data.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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Example 1. We use the two classes of data in Figure 1 (a) to show
the procedure of finding principal features. The design starts by first finding
two hyperplanes in the input space associated with the first principal feature

and the first hidden node. Fisher's method is used to find a weight vector
as the first principal features with all the training data in the input space

[6. 1]. The hyperplanes in perpendicular to the vector are show in Figure 1

(a). Then. the classified data are pruned off and only the unclassified data

in between of the two hyperplanes are used to train the second hidden node.

The residual data set from Figure 1 (a) is shown in Figure 1 (b). Since the
mean vectors of the two classes are very close now, Fisher's method does not
give the best principal features. In the second hidden node design, we use
a principal component analysis [4] to find the second principal features and

associated two hyperplanes. The network structure and associated training
algorithm is summarized in the Section 2.

For this classification problem, the Backpropagat~ion (BP) training method
takes hundreds of seconds to hours, and one still does not get satisfactory

classification. The Radial Basis Network (RBF) can converge to an acceptable
performance in 3.5 seconds, but it needs .56 nodes. On the same problem, a
design based on the principal feature classification only takes 0.2 seconds and
needs only two hidden nodes with a better performance than both BP and
P BF.

.. e°°; ode).. ( The "sa -at s
° ,i o 2 •.... ° "-

Fig. 1 (a). Tbc original data and the hyperplanes of the first bidden node

(Fisher's node). (b). The residual data set and the hyperplanes of the second

hidden node (Principal Component Discriminant node). (c). The partitioned
inout space by two hidden nodes and four thresholds designed by the Principal
Feature Classification.

2 PRINCIPAL-FEATURE NETWVVORKS

Principal P re r\elicr/,rs (PFN) are a class of neural networks based on the

principal feature concept. An implementation of the PFN is shown in Figure
2. It was called a Discrininant NeuTral Xelteork (DNN) in [1]-[4]. Similar

nate is also used for other methods [18]. So we have now changed the name

from DNN to PF-N to be more specific and to concentrate on the newx design

p-inciples.
The hidden nodes are the building blocks of PFN. The single hidden node

design algorithm is motivated by multiple-multivariate-Gaussian component
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Fig. 2. An implementation for Principal Feature Networks (PFN).

classification [19]. Two kinds of practical hidden nodes, a Fisher's Node,
for training classes with separable mean vectors, and a Principal Component
Discriminant Node, for training classes with common mean vectors, are used
to separate classes. They are designed for non-Gaussian and not linearly
separable cases [4].

When components of two training data populations Class 1 and Class 2
are described as having multivariate Gaussian distributions with sample mean
vectors and covariance matrices/pi, E 1 and P2, E 2 respectively, the minimum-
cost classification rule is given by:

Classl : L(x) > 0; Class2 : L(x) < 0; (1)

where x is an observed data vector or feature vector of N components and 0
is a threshold determined by the cost ratio, the prior probability ratio, and
the determinants of the covariance matrices, and
L(x) = xt(•- 1 - -2 1 )x - 2(ptE-' -- t21)x

N

= ZAlx'WIl 2 -2Wox, (2)
i=1

where W 0 =(pX'-1-E2) and for i > 0, Ai and Wi are the i'th eigenvalue
and eigenvector for matrix Eli1 - E2 1. Formula (2) is implemented as a
Gaussian Discriminanl Node in Figure 3(a).

The purpose of such a node is to provide a feature which permits an
approximately or locally Gaussian component of a class to be separated from
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other classes. It is not necessary at any stage to separate the whole class, but
simply to isolate the next separable component of the class.

When the covariance matrices in (2) are the same, the first, quadratic
term is zero, and it computes Fisher's linear discriminant. The general node
becomes a Fisher's node as in Figure 3(b). When the second term can be
ignored. the above formulas only have the first quadratic term. If we only use
the first eigenvalue, the Gaussian node becomes a quadratic node as shown in
Figure 3(c). The thresholded squaring function can be further approximated
by two thresholds as in Figure 3(d).

,, 
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Fig. 3. (a) A single 
Gaussian 

discriminant 
node. 

(b) A Fisher's 
node. 
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quadratic 
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of the quadratic 
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covariance matrices and w is the weight vector [4]. The sequential hidden
node design and data pruning procedure has been introduced in Section 1.
See [1] - [4] for the details.

Generally speaking, other single-node (perceptron) training algorithms
can also be applied in PFN training. We prefer the above algorithms moti-
vated from multivariate statistical analysis because they can solve large ap-
plication problems much faster than gradient-descent or iterative algorithms
without worrying about local-minimum in a signal-node training.

3 HIDDEN NODE SIMPLIFICATION

We present two kinds of simplification algorithms for different applications,
Lossless Simplification for minimal implementation and Lossy Simplification
for improving the ability of the network for generalization. Depending on
applications, the lossless and lossy pruning algorithms can be applied indi-
vidually or together.

3.1 Lossless Simplification

After the hidden node design, the input space is partitioned by hyperplanes
associated with their thresholds and hidden nodes. Some of the hyperplanes
may not be necessary for a minimal implementation. The hidden node sinpli-
fication and the output node design can be treated as a Boolean minimization
problem. The function of the output nodes is to group the partitioned re-
gions of same class into one output binary word, i.e. to generate a Boolean
function F, such as d = F(y), where d represents the output binary words,
one word for one class, y is the binary words of the hidden node outputs,
one word for one region. Usually, in a multi-dimensional input data space,
some of the partitioned regions may not have data vectors. The regions with-
out data vectors can be used in Boolean minimization as don't care items to
simplify the Boolean function F. The Boolean minimization can be done by
logic-minimization algorithms implemented in computer software [15].

The above simplification algorithm will not change the logical representa-
tion of the Boolean function F. No region with data vectors is ignored and
nothing is changed on the network accuracy on the training data set, so it is
lossless pruning. The output nodes are designed during the pruning proce-
dure for a minimal implementation. However, it is not designed for improving
the network generality.

3.2 Lossy Simplification

The Lossy Simplification is developed for improving the ability of the network
to generalize to new data. The simplify algorithm is based on the performance
analysis of each threshold as well as hidden node. We call it lossy pruning
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because a subset of partitioned regions and associated training vectors will
be ignored and the network accuracy will be reduced on the training data
set. Compared to the lossless simplification, the lossy Simplification is much
faster and more practical for real applications.

During the PFN training, each threshold is labeled with the class parti-
tioned by that threshold. Also, the contribution of each threshold for each
class are saved in an array, called contribulion array. The array is used for
pruning analysis. We use the following example to illustrate the details of
the simplification algorithm.

4 A DESIGN EXAMPLE

Example 2: A principal feature network was designed to recognize 10 classes
of signals in a real application. Each of training and test data sets has about
3,000 examples and each example is a 24 dimensional vector. In the design
specifications, the expected network accuracy is 95%, which will be used
to determine the necessary number of hidden node, and the allowed miss-
classification rate is 20% for all 10 classes, which is used in determining the
thresholds to avoid over-fitting.

Using the sequential partition-pruning design procedure, all training ex-
amples were partitioned by 49 hidden nodes and 98 thresholds. The 49 hidden
nodes included 36 Fisher nodes and 13 principal component nodes. Each node
has 2 thresholds.

The contribution of each threshold was saved in a contribution array.
The array was sorted and plotted in Figure 4(a). From the Figure 4(a), we
can see that few of the thresholds have significant contribution to some of
the classes, but many thresholds have too little contribution in partitioning
the input space. The accumulated network performance in the order of the
sorted thresholds is shown in Figure 4(b). The more the thresholds we keep,
the higher the network accuracy we can obtain on the training data set, but
to keep too many thresholds which have too little contribution can affect the
generality of a designed network. In other word, to use more thresholds may
not give a higher accuracy on the test data set.

For this example, the desired network performance is 95%. A horizontal
dash-dot line in Figure 4(b) marked the desired 95% accuracy. The line has
an intersection with the curve of the accumulated network performance. We
projected the intersection onto the Figure 4(a) as the vertical broken line in
both Figure 4 (a) and (b). Then a necessary number of thresholds to meet
the desired network performance can be determined. For this example, the
first 38 thresholds in Figure 4(a) can meet the 95% network accuracy. Thus
the thresholds from the 39 to 98 can be pruned.

Once the thresholds are pruned, the hidden nodes which need to be pruned
can be further determined. If all of the thresholds associated with one hidden
node are pruned, the hidden nodes should be pruned. In this example, after
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Accumulated Network Performance
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Fig. 4. (a) (bottom) The sorted contribution of each threshold in the order of
its contribution to the class separated by the threshold. (b) (top) Accumulated
network performance in the order of the sorted thresholds.

threshold pruning, 31 out of 49 hidden nodes have at least one associated
threshold, thus these 31 hidden nodes are kept and other 18 hidden nodes are
pruned. After the simplification, the actual design performance on the train-
ing set is 91.44%. On the test set, the simplified network has a performance
of 87.68%.

5 COMPARISON AND CONCLUSIONS

Principal feature networks (PFN) have been compared in experiments with
the most popular neural networks, such as backpropagation (BP), and ra-
dial basis function (RBF) network in term of performance, complexity of
structure (number of hidden nodes), training time, and million floating-point
operations (Mflops). One comparison was given in Example 1. In [3], the
PFN was compared with BP, RBF, and linear discriminant analysis (LDA)
in a multispectral image recognition problem. Due to the very large data set,
both BP and RBF failed to train a classifier in a reasonable amount of time.
For that problem, the LDA gave a classification rate of 55%; a modified RBF
reached a rate of 60% with 490 hidden nodes in 221 Mflops; the PFN reached
a rate of 72% with 77 hidden nodes in 38 Mflops.

The training procedure of sequential addition of hidden nodes in PFN
looks similar to several constructive algorithms which have the capability to
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add hidden nodes while the training in progress. These constructive algo-
rith-s ir:clude DecBms o Tree Algoy'lims (DTA) [12], :Veural TIee XewOmrk'

- N-) [10'. 11], f- s'er Tree Xelwonks (FIN_) [7'. 8] Cioscorh-Correltolion Ar-

ch 'ec2 'rc (CC'A) [9]. Pieceawi.5c-b1n ear discrrinalien (PLD) [13]. Tiling Al-
G - 4 q fIT A)[16]. etc. For those algorithms and network architectures. since
they are easy to he cool pared, we focus the comparison on theory and con-
'e-,,ual levels in the following list. Generally speaking. the PFN has the

adv antages of these networks or training algorithms. it can get 100 c accu-
ray o01 trai'Oing set when it is necessary. It also has many new functions and

) Except PE N. TA. and PLD, all other algorithms are for tree structures
wan no- for parallel iteplementation. In [8], the author give a algorithm to

conrt ITA to parallel architecture, however, the tree algorithms are not
nar Ural'y for parallel in.plementation which should be a major advantage
of ný7:-al networks. The PEN can be implemented in a tree structure for
soft are or in a parallel structure, such as a processor array, for VLSI design
w1 n it 'is necessary [5].

(2) Except PF and IA, in oeneral, none of the other algorithms consider
to p0runirg training clata imnmediately after each hidden node design. The
prunoi- cae reduce the training data set, release memory space, and make

0n hildden node design more efficient. Noriurallv after first few hiddee
od d11e 1 most of the tra'ining data are pruned. so the PEN training in each

2ddt:ona! hi'dden node will use lss and less time and i'emory space. The TA
retpýýts the -prunrig orocedure in every layer of the multi-layers training while
thke P o_ on1 needs to train one layer. The DTN and NTN can only prune

-i data when the-' reach the leaf nodes. The dimension of the input

space oD" the CCI hidden node gets larger and larger during the trainirig. so
tL( CCA '"fl be slowed down after adding more hidden nodes.

),ost of the alorithors, such as DTA, NTN, CCA, and TA, did not

a stp tatistical n.ethod 'n training whiclh can speed up the training sigrifi-

4 The NlT., CCA. and TA are based on gradient-descent or iterative
e wrich can slov: down the training and there is no guarantee for a

goa-ininuni.

(5) The DTl can only construct hyperplanes in perpendicular to pre-
smhed a'.-es which eithe reduces the performance or needs more nodes.

C ir FE ofle'; toe algorithm to deal with the case in which two or

n-_re classes are o'ver-lapped on one another and proved the optimal node
design adgorithne [41.

I The PFN allow quadratic nodes for a better performance.

(C) PEN and DTA allow: murtiple thresholds on each hidden nodes. This
ca • funie more data at each hiddeo node without using additiona1 weight

It can arso approximate the optiiral quadratic nodes.
r) D•n T have tree node pruning algorithms for a better

Sc,- o -n the t'st sets. Tlie lossy siirplification algorithrr "or PFN is
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simpler than the tree pruning algorithms.
(10) The PFN has the lossless simplification for a minimal implementation

as presented in this paper.
In conclusion, principal feature classification is a concept for designing

constructive neural networks. By applying multivariate statistical analysis
in defining and training hidden nodes, the principal feature networks can be
trained much faster than gradient-descent or other iterative algorithms. The
over-fitting problem as in most neural network training can be avoided in
determining thresholds, and the generalization can be realized in the loss-
less simplification. The principal feature network has been used in solving
real-world classification problems with large data sets. It gave better perfor-
mance, less CPU time in training, and simpler network structures than other
compared networks.
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Abstract
A novel neural network is proposed for the dynamic classification

of spatio-temporal signals. The network is designed to classify signals
of different durations, taking into account correlations among different

signal segments. Such a network is applicable to SONAR and speech
signal classification problems, among others. Network parameters are
adapted based on the biologically observed habituation mechanism.
This allows the storage of contextual information, without a substan-
tial increase in network complexity. Experiments on classification of
high dimensional feature vectors obtained from Banzhaf sonograms,
demonstrate that the proposed network performs better than time de-
lay neural networks while using a substantially simpler structure. The
mathematical power of the network is discussed, including its ability
to realize any function realizable by a TDNN. Additionally, principal
component analysis is used to introduce ý further improvement to the
network design by reducing the dimensionality of the encoded temporal
information.

Keywords: dynamic neural networks, habituation, classification, spatio-
temporal signals, recurrent networks

1 INTRODUCTION
Among biological mechanisms that can encode temporal information, is a partic-
ularly simple and well understood phenomenon known as habitoation [1], [3], [8],
[13]. Primarily, habituation is a means by which biological neural systems vary
their synaptic strengths in order to ignore repetitive, irrelevant stimuli. Habitua-
tion serves as a novelty filter. If the presynaptic neuron is active for a short period
of time, habituation tends to decrease the synaptic strength which then recovers
only after the period of activity is over. The longer the presynaptic neuron is active
the slower it recovers. It is important to note that habituation does not act in a
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vacuum. Other learning mechanisms, such as sensitization and Ilebbian learning,
may also be operating concurrently to alter synaptic strengths based on the utility
of the information from presynaptic neurons.

Several researchers in neurophysiology have developed mathematical mod-
els of habituation [1], [3], [14]. A discrete time version of the kVang-Arbib [14] ha-
bituation model for varying the strength, W(I), of a single synapse is summarized

by:
w ( + 1) = w'V(t) + r (0:ýt) (w(0) - IwV(t)) - IuV(1)/1(t)); (1)

z(t + 1) = r(i) + yZ(t)(z(l) - 1)1(t). (2)

In this model, 1(t) is the activation of the presyiaptic neuron at time 1, r
is a constant used to vary the habituation rate and a is a constant used to vary the
ratio between the rate of habituation and the rate of recovery from habituation.
The function z(t) monotonically decreases with each activation of the presynaptic
neuron. This function is used to model long term habituation. Due to the effect
of z(t), after a large number of activations of the presynaptic neuron, the synapse
recovers from habituation more slowly.

Aside from its primary function, habituation has also been suggested to
be a means of encoding short term temporal information [8]. lit this paper, we
introduce a mechanism for using habituation to encode temporal information in
an artificial neural network. In Section 2 we describe the general struct ure of our
design. In Section 3 we describe the mathematical properties of our mechanism.
We demonstrate that our mechanism is a special case of a general neural network
structure which is capable of approximating arbitrarily well any continuous, causal,
time-invariant, mapping from one discrete time sequence to another. Finally we
explain how it fundamentally differs from the gamma network model of de Vries

and Principe [5]. In Section 4, we discuss experimental results for our network on
the classification of artificial Banzhaf sonograms. We demonstrate that our network
is more efficient than TDNNs for a number of classification problems involving long
term temporal information. Finally in Section 5, we draw conclusions based upon
our theoretical and experimental results.

2 GENERAL STRUCTURE

We have designed short term habituation units based iupon the \Vang and Arbib
model of habituation [14] and used them in a spatio-temporal classification net-
work. A set of habituated weights is first obtained froii the input ](1). if the input
is multi-dimensional, one set is extracted for each comiponent. These weights are

affected by the past values of the input, and implicitily encode temporal informna-
tion. Spatin-temporal classification can thus be achieved by using such habituated
weights as inputs to a static classifier. For example, if a multilayered percep-
tron (MLP) (alt. radial basis function network) is used, the overall network is a
habituated MLP (alt. habituated RBF) that can be applied for spatio-teinporal
classification. The model equation is shown as follows.

Waj( + 1) = WV(i) + a(op(1 - W1-(1) - l!elI)J(t)) (3)

This equation is derived from Equation I by setting z(/) = 1 to eliminate long term
habituation effects, and letting Wa(t) rebound to I instead of 1I+10). Long term
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habituation is eliminated so that the ability of W/(t) to recover from habituation
does not vary over time. Otherwise the Wk(t) values would eventually decrease
to zero for all but the most infrequent of inputs. The k index is used to indicate
that multiple values Wk(t + 1) are determined for an input signal 1(1). It was
found mathematically, that multiple habituation values are better able to encode
temporal information. This fact may also have biological context, because it is
known that a given pair of neurons often have multiple synapses between them.

In this paper, dynamic classification is achieved by training a suitable
nonlinear feedforward network, whose inputs are a set of m habituated values,
Wk(t + 1), 1 < k < m, that are extracted from the raw input 1(t). Figure 1
shows the generic structure of such a classifier. In [14] Wa(t) represents a synaptic
strength, and I(t) the activity of the presynaptic neuron, but because our designs
use habituated values as network inputs rather than weights, the variables are re-
defined accordingly. We do not mean to imply that this network construction is
either the most biologically feasible or the only method in which habituation might
be used. A more biologically inspired approach would be to reflect IVV(t) as modu-
lating weights of the inputs. We found by experiment, however, that this approach,
although more biologically feasible, does not encode temporal information as well
for the classification problems which we studied. Moreover, the structure of Figure
1 can be shown mathematically to be very powerful.

The parameters, rk and ak affect the rate at which habituation occurs,
thereby determining the temporal resolution and range of the information obtained.
The issues and tradeoffs involved are akin to memory depth versus resolution in
dispersive delay line based models [5], [6]. We set, Wk (0) to zero for all k, employ
positive values of ak and 7k such that Oark + 7k < 1 and normalize the input such
that 1(t) G [0, 1]. With these specifications, we can guarantee that the habituation
process is stable. In fact we can guarantee that WK(t) E [0, 1] for all values of k
and t.

3 MATHEMATICAL PROPERTIES

In this section we present theorems regarding the ability of a general category of
neural networks, including habituation based networks, to approximate arbitrarily
well any continuous, causal, time-invariant mapping f from one discrete sequence
to another. Since all functions realized by TDNNs with arbitrarily large but finite
input window size are continuous, causal, and time-invariant, the proofs of the
theorems also imply that habituation based networks can realize any function which
can be realized by a TDNN [10]. The key to the proof is to show that the memory
structure realized by the habituated weights is a complete memory. Then so long as
the feedforward stage is capable of uniformly approximating continuous functions,
the overall network will be capable of mapping one sequence to another.

Due to space limitations, the theorems are stated without proof. An in-
terested reader may obtain a copy of the complete proof by anonymous ftp to
ftp.lans.ece.utexas.edu. The file in question is /pub/hab-proof .ps. The proof
is related to previous work by Dr. I. W. Sandberg. In [9] lie demonstrates a method
for determining necessary and sufficient conditions for universal approximation of
dynamic input-output mappings. Also in [10] lie demonstrated a universal approx-
imation proof for structures similar to that of Figure 1, with the exception that the
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temporal encoding is performed with linear functionals.
Let X be the set of discrete time sequences for which I E ._ implies

1(i) E [0, 1]. Let R be the set of all discrete time sequences. We are attempting
to approximate a continuous, time-invariant, causal function, f, from X to R.
We know additionally that any TDNN can be represented by such a function.
As illustrated by Figure 1, we suggest transforming the inputs with m habituation
units. After habituating, it is our conjecture that f can be approximated arbitrarily
well by an MLP or RBF which takes the habituated values, W1 k..(1 + 1), as inputs.
If our conjecture is true, then a habituation based network is able to realize any
function realizable by a TDNN.

Theorem 1 states that a two layer neural network with an exponential
activation function and a particular structure for processing the inputs can uni-
versally approximate f. Theorem 2 states that habituation based networks are a
specific case of the generalized structure exhibited in Theorem 1.

The results of the two theorems can be readily extended to include ha-
bituated MLP and RBF networks and to include multiple (d > 1) spatial input
dimensions, Ih(i), 1 < h < d. In order to show that habituated MLPs and RBFs
can perform the same approximations it, is sufficient to show that the exponential
function can be approximated arbitrarily well by a summation of sigmoids or gaus-

sian functions. This is a special case of theorems which have already been proven
for sigmoids by Cybenko [4] among others and for gaussian functions by Park and
Sandberg [7]. The expansion of the result to multiple spatial dimensions follows
directly from the proof of Theorem 1.

Before we state the theorems it is necessary to make a couple of definitions.
First we will define the delay operator, T0 .

(Tg3X)(t) 0 0 ifI < 3
)( x(t - i3) otherwise

Next we define the concept of a complete memory. Let B be a set of mappings
from X to R. B is a complete memory if it has the following four properties. First,
there exist real numbers a and c such that (bl)(t) E (u, c) for all I E Z÷, + X X,
and b E B. Second, for any t E Z+ and any to such that 0 < to < 1, the following
is true. If x and y are elements of X and .r(lo) #4 y(lo), then there exists some
b E B such that b6(t) j by(t). Third, if b E B then (blf>x)(t) = (bt)(t -/3) for all
i E Z+, all x G X and any /3 such that 0 < /3 < t. Fourth, every b (E B is causal.

Theorem 1 Let f be a continuous, causal, time-invariant function from X to R.
If B is a complete memory then the following is true. Given any e > 0 and any
arbitrarily large positive integer, t o, there exist real numbers, a3 and cJ, elements
of B, ba;;, and natural numbers, p and m, such that thc following incquolity holds

for all z E X and all t < t o.

(f x)(t) - aexp E C-bk~)1 (4)

.t=i \~

By proving Theorem 1 we demonstrate that a two layer static neural
network with an exponential activation function and inputs operated on by elements
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of a complete memory, B, can perform the same function as any TDNN. In order to
show that a habituation based network is a special case of this type of generalized
structure we state the following theorem.

Theorem 2 Let bo = W(O) = 1. A prototypical habituation function is defined
recursively as follows.

bx(O) = W(1) = bo + ar(1 - bo) - rbox(O) (5)

bx(t) = W(t + 1) = bx(t - 1) + aor(l - bx(t - 1)) - rbx(t - 1)x(t) (6)

Let B be the set of all such functions for all o and r G 7R such thot a > 0, r > 0,

,r < 1, and ar + r < 1. B is a complete memory.

It is important to notice that the input processing functions, b;k used in
Theorem 1 depend on j and thus the habituation parameters used also depend
on j. This means that different hidden units in the feedforward network may have
different input values. This dependency is not present in the structure illustrated in
Figure 1. However, we can show that for any approximation g of the form discussed
in Theorem 1, there is an equivalent network without this dependency. Let g be an
approximation function of the form -=>1 a. exp (Zk=l c 3kbjkx). It is easy to see

that given any such g one can find an h of the following form such that g(r) = h(x)

for all x E X.
p &

h(x) = aj exp ws (7)
3---1 ( i=1

Here wji are real numbers which serve as weights to the hidden units and s, are
elements of a complete memory B.

Simply choose M to be the number of distinguishable functions bjk used
in g and let the sequence {si} be the list of these distinguishable functions. For
a particular si and a particular hidden node j, set zv, to zero if the original bak
corresponding to si was not present at hidden node j, otherwise set lv,, to the
appropriate cjk. An approximation of the form given by h has the same structure
as that given in Figure 1, so the structure illustrated in Figure 1 is adequate.

Now we have demonstrated that habituated MLPs and RBFs are satisfac-
tory substitutes for TDNNs. The question that remains is which are miore efficient.
The answer depends on the nature of the function that is being realized. The com-
plexity of TDNNs depends on n, the input window size. The number of weighted
inputs to each hidden unit in a TDNN is nd. For functions which only depend on
recent values of the inputs, TDNNs can be quite efficient; but for functions which
depend on long term temporal information or variable amounts of temporal infor-
mation, TDNNs are not efficient solutions. For habituated networks, the required
memory depth and resolution affects the choice of a and 7 in Equation 3, and the
number of habituated weights. Differents weights can have different values of ce
and r, and the number of weights used can vary in different dimensions. Thus the
memory structure can be optimized for a given mapping. The iumber of inputs to
each hidden unit is Eidl mi, where m, is the number of habituation values used
to encode the ith component of 1(t).

A parallel can be drawn between finding a suitable m. and finding a suitable
number of hidden units in an MLP or RBF. Ini both cases there is no guarantee
that the number required will not be inordinately large. However, in the case of
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the MLP, a large set of problems have been found for which a small number of
hidden units is suitable. The same is true for finding m. There may be many
simple problems which are unsuitable for TDNNs because they require long term
temporal information, but which can be solved with habituated networks with small
values of m.

Since the output of the short-term memory stage is different for TDNNs
and habituated networks, the complexity (number of hidden units) of the feedfor-
ward network needed at the output stage may also differ. For certain problems,
habituated networks require a smaller feedforward output stage as compared to
TDNNs for a given level of approximation. We have previously performed exper-
iments using habituated MLPs to classify real SONAR data and have found that
small habituated networks outperformed larger TDNNs. In fact we found that even
m = 1 networks dramatically outperformed TDNNs with time window length of
5 or more [11]. Unfortunately due to the proprietary nature of the real SONAR
data sets, they cannot be made public. Therefore, in the next section, we discuss
experimental results on artificial Banzhaf sonograms, which can be easily generated
and verified by other researchers.

The Gamma network proposed by Principe [5] has a structure which is
similar to ours, but there are significant differences. For one, unlike habituation,
the input transformation used in the Gamma network is linear. The nonlinearity
of habituation can be readily seen by expanding W(t + 1) to obtain:

t t t

W(t+1) = r+ ar E J( - r - rI(h)) + W(0) J(1 - ar- rI(i)) (8)

j=1 h=j i=O

Secondly, in the Gamma network each transformed input, 1,17, depends on the pre-
vious transformed input, Wi- 1, but in a habituated network each Wi is generated
independently from the raw inputs.

4 EXPERIMENTAL RESULTS
The networks were trained on data sets consisting of Banzhaf souograms, superpo-
sitions of 2-D gaussians in time and feature space [2]. The signals constructed are
variable length (30-45 samples) sequences of 30 dimensional feature vectors. The
reasons for choosing Banzhaf sonograms and specific details about the design of
the data sets used are discussed in [12].

Three data sets were constructed with 7 classes each including a "noise
only" class. The signals in the data sets were Banzhaf sonograms which were
rotated, scaled, warped, and combined with additive noise. Figure 2 shows proto-
typical examples of each signal class in data set one (DS1).

Classification of DS1 is a problem which requires relatively long term tem-
poral information. It is impossible to uniquely classify any signal based on only a
short temporal window of inputs. For example, consider the prototypical signals of
classes A, B, and C as illustrated in Figure 2. The signals in classes A and B are
identical for the first twenty time samples, while classes A and C are identical for
the last twenty time samples. Additionally, there is no time window of less than
ten samples in any of the three signals that is not identical to a time window in
one of the other two signals. This classification problem is obviously difficult for
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short window TDNNs. In order to demonstrate the effectiveness of habituation for
problems with a range of difficulties we have constructed two other data sets which
do not depend as severely on long term temporal information. Data set 2 (DS2)
and data set 3 (DS3) were generated using the same parameters as DS1 except that
the centers of the component gaussians were shifted to reduce the overlap among
the classes. In DS2, the component gaussians of samples of a particular class were
all shifted uniformly, whereas in DS3, individual component gaussians were shifted
so that a particular gaussian component might act as a tag for identifying the class
membership of the signal. For this reason DS3, is the most local temporal informa-
tion rich of the three data sets, and one would expect TDNNs to perform relatively
better on DS3 than on either of the other data sets.

For our first experiment, we trained habituated MLPs and TDNNs on
DS1 and DS2. The patterns in both data sets were randomly shuffled so that
the classification of each pattern was uncorrelated with the classification of nearby
patterns in the sequence. When the habituated MLP was tested, the habituation
values, Whk(t + 1), were calculated at each instance in time and then fed into the
feedforward portion of the network. At each instance in time an output vector was
computed and then used in classification. As an optimization, only the habituation
values computed for the last ten samples in each signal were used to train the
habituated MLP. This reduced training set method was used because habituation
gradually builds up information about a signal as the signal is presented. During the
first few samples of a signal, a habituated MLP does not have enough information
to classify a signal. By the end of the signal, however, the network should have
accumulated enough information to perform the classification. The reduced training
set method was not used for TDNNs, however, because they exhibit no similar
dichotomy in the way they store information over time.

For the first set of experiments we used habituated MLPs with random
values of ahk and rhk in the range [0, 0.5]. The o'hk and Trhk parameters were not
modified during training. The number of habituation units per input, m, was set to
one. We found that for DS1 the habituated MLP, (H-\MLP), greatly outperformed
a 5 sample time window TDNN and an MLP. All three networks utilized 10 hidden
units. Increasing the number of hidden units was not found to greatly effect the
performance.

Classification and detection of signals is accomplished using two thresh-
olds, H and L. Detection occurs whenever a single output node has an output
value, Oma., larger than all other output nodes, OM-,. > H, and all other output
values are less than 1 - H, for L consecutive input presentations. Classification

is considered to be correct for a given signal if the only class detected within the
length of the signal is the desired class. The best values of H and L may vary from
network to network. For a fair comparison, for each network one should select the
L for which the network achieved its highest classification rate for some H.

Figure 3 illustrates performance on DS1 in terms of the classification rate,
i. e. the percentage of signals detected as well as correctly classified. Labels such
as "L10" are included in the figures to denote the particular value of L used. As
mentioned earlier, the best value of L was chosen for each classifier in order to make

a fair comparison.
Results for DS2 similar to those found for DS1 are illustrated in Figure 4.

For conciseness, this time the results are given in terms of the classification rate
only. One notices in Figure 4, that although the -IMLP has achieved a greater
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maximum result than the TDNN, it does not have a better result at every value of
H. This is an artifact of the particular L values used. The greater the value of L
the steeper the decrease in performance for increasing H.

The HMLP was able to outperform the TDNN, because unlike the TDNN,
the HMLP is capable of encoding long term temporal information. On DS1 this
is particularly important, because classification is impossible without information
from a large portion of the entire signal length.

One method for improving HMLP performance and reducing the com-
plexity of the static classifier stage is to perform principal component analysis on
the habituated values. The sequence of habituated values generated for a single
pass through the training set is stored and the covariance matrix, M, is deter-
mined. Next, the eigenvalues and eigenvectors of M are computed. Finally the
set of eigenvectors, A,, corresponding to the largest few eigenvalues are selected.
Each vector of habituated weights, W(t), is then replaced by the sequence of dot
products, W(t)TAi. These dot products are presented to the static classifier instead
of the habituated values themselves.

By applying principal component analysis one can decrease the correlation
among inputs to the static classifier, as well as, decreasing the number of inputs.
For an HMLP with m=l the number of inputs to the static classifier was reduced
by a factor of 3, while simultaneously improving the classification rate on DS1 from
55 to 68 percent.

So far all the experiments discussed have focused on HMLPs with m=1,
and randomly assigned habituation parameter values. Experiments which examine
the effect of varying the m, aik, and rik can be found in [13].

5 CONCLUSIONS

A multiply habituated MLP (MHMLP) can realize any function realizable by a
TDNN with an arbitrarily large but finite input window. The relevant issues for
comparing the two thus are which generates a simpler structure for a given accuracy
level, and which network is easier and quicker to train. From the empirical results
determined so far, MHMLPs are consistently more efficient than TDNNs. In fact
for DS1 and DS2, a single habituation unit per input HMLP outperforms a TDNN
with 5 sample time windows. Even on DS3, an MHMLP with m=2 was able to
perform as well as the more complex 5 time sample TDNN. Note that because of the
difficult nature of the data sets, the classification rates are low for both networks.
Of course they perform much better than static classifiers (MLP, RBF) which fail
because of substantial overlap among different classes at any time instant.

Simple MHMLPs seem to do particularly well on data sets which require
long term temporal information for classification. In such cases, TDNNs need long
time windows in order to perform well. Such TDNNs tend to be overly complex,
leading to slow training and poor generalization.

Additionally it was found that large improvements in the complexity and
performance of HMLPs can be obtained, by performing principal component anal-
ysis (PCA) on the habituated values. When PCA was used with DS1, a 13 percent
improvement in performance was obtained, despite the fact that the number of
parameters trained was reduced by more than twofold.

The performance of MHMLPs are quite robust with respect to parameter
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values. The netwiorks do well even when the habituation parameters are randomly
assigned and never optimized. The next step in this research is to develop means of
optimizing the habituation parameters, a and r. Another topic for further study
is to investigate other input transformation mechanisnms, since a result similar to
Theorem 1 can be proven for any set B which is a complete memory.

References
[1] Bailey, C. and Kandel, E. "Molecular Approaches to the Study of Short-Term

and Long-Term Memory," Functions of the Brain- pp 98-129, Clarendon Press,
Oxford, 1985.

[2] Banzhaf, W., and Kyuma, K. "The Time-into-Intenlsity-Mal)ping- Network"
Biological Cybernetics, Vol. 66, pp 115-121, 1991.

[3] Byrne, J. H. and Gingrich, K. J. "Mathematical Model of Cellular and Molec-
ular Processes Contributing to Associative and Nonassociative Learning in
Aplysia," Neural Models of Plasticity, pp 58-70, 1989.

[4] Cybenko, G., "Approximation by Superpositions of a Sigmoidal Function,"
Mathematics of Control, Signals, and Systems, Vol. 2, pp 303-314, 1989.

[5] de Vries, B. and Principe, J. C. "The Gamma Model - A New Neural Model
for Temporal Processing," Neural Networks, Vol. 5, pp565-5 7 6, 1992.

[6] Mozer, M. C. Neural network architectures for temporal sequence processing.
In Weigend, A. S. and Gershenfeld, N., editors, Timte Series Prediction, pages
243-264. Addison Wesley, 1993.

[7] Park, J., and Sandberg, I. W. "Universal Approximation Using Radial-Basis-
Function Networks," Neural Computation, Vol. 3, pp 246-257, 1991.

[8] Robin, D., Abbas, P., and Hug, L. "Neural Responses to Auditory Patterns,"
J. Acoust. Soc. Am. Vol. 87 part 4, pp 1673-1682, 1990.

[9] Sandberg, I. W. "Approximately-Finite Memory and the Theory of Represen-
tations," International Journal of Electronics and Comnmunications, Vol. 46,
No. 4, pp. 191-199, 1992.

[10] Sandberg, I. W. Structure theorems for nonlinear systcms. Multidimensional
Systems and Signal Processing, 2:267-286, 1991.

[11] Stiles, B. W., "Dynamic Neural Networks for the Classification of Oceano-
graphic Data," Master's thesis, Depart memnt of Elec. Eng., Univ. of Texas at
Austin, 1994.

[12] Stiles, B. W., and Ghosh, J. "A Habituation l3aserd Mechanism for Encoding
Temporal Information in Artificial Neural Networks", (invited paper ) Proc.
SPIE Conf. on Applications and Science of Artificial Neural Networks IV, SPIE
Proc. Vol. 2492, pp. 404-4515, 1995.

[13] Wang, D. and Arbib, M. "Modeling the Dishabituation Hierarchy: the Role
of the Primordial Hippocampus," Biol. Cybern. Vol. 67, pp 535-544, 1992.

143



fothoet.,Ineuu yu-ouwDatd e ýTet

In rc= I-cc iE ett gh)rs

Fiparue 4: Clooification Rate (C)on Data Set 2

14_4



A Numerical Approach for Estimating Higher Order
Spectra Using Neural Network Autoregressive

Model

Naohiro TODA and Shiro USUI

Information and Computer Sciences, Toyohashi University of Technology,
Tempaku, Toyohashi, 441, JAPAN

fax:+81-532-46-7806, e-mail: usui(-bpel.tutics.tut.ac.jp

ABSTRACT
A method for parametric estimation of higher order spectra of time series us-
ing a nonlinear autoregressive model based on multi-layered neural networks
(NNAR model) is presented. In the real world problems, there exist signals
that can not be described sufficiently by linear time series models such as AR.
or ARMA models. In order to characterize such signals, several nonlinear
time series models have been investigated in recent years. However, in con-
trast with the case of linear models, there are a few parametric approaches
that estimate the higher order statistical characteristics of observed time series
using such nonlinear time series models. It is very difficult to derive analyti-
cally explicit fornulations of higher order spectra from the expressions of such
nonlinear time series models. In this study, employing numerical techniques,
we constructed a parametric estimator of higher order spectra. It consists of
following steps: 1. training an NNAR model on the given time series, 2. iter-
ation of numerical integrals for solving the joint probability density function,
3. calculation of higher order cumulant functions by renewal equations based
on the joint probability density function solved in 2., 4. multidimensional
discrete Fourier transforms of higher order cumulant functions calculated in
3. We also show that any NNAR model with finite valued weights satisfies a
sufficient condition of convergence.

1 Introduction
In the case of Gaussian time series, we can obtain a sufficient information
about time series front the power spectra as the statistical characteristics
of the time series can be described completely by the first and second
order moments. Specifically, the linear AR model has been used widely
in many areas of engineering as a conventional parametric estimator of

power spectrum [1].
However, there exist many signals that have non-Gaussian nature.

Since the nonlinear time series models can generate non-Gaussian time
series, several authors have proposed them to characterize such non-
Gaussian signals [2][3]. However, in contrast with the case of linear
models, there are a few parametric approaches estimating the higher or-
der spectra [4] of the observed time series using nonlinear time series
models, except for some special cases [5]. In this study, we constructed
a parametric estimator of higher order spectra using a nonlinear au-
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toregressive model based on the multilayer neural networks. It is very

dificult to analytically derive the explicit forms of the joint probability

density function from the expressions of such nonlinear time series mood-
eis. Although the analytical solutions are not available, we can construct

a parametric estimator of higher order spectrum using some numerical

solutions. In general, if there exists a stationary joint prol)ability den-

sitv function of a nonlinear autoregressive model, this function satisfies a

certain integral equation. Here we take an approach to solve the integral

equation with an iterative formula using numerical integrals.

2 I'sTonlinear _Autoregressive Model
A general form of the nonlinear autoregressive model is given as follows:

X'k F F[xki--] ±+ CA (1)

Xere k. -1,q- (Xk. -, X 5 >. , -) 29- .C is an i.i.d of Gaussian
( ( ), /1 < )c, oy < "), F[ ] is a continuous function:R t - R,

aIld (.)' means the transpose of a vector.

We can rewrite (1) as a state space representation:

Xkq = f(Xi ,- 17,, e ), (2)

where [(Xk- !,,,a ) = (F[Xki-r I] + C1. k, -I,, X- 2, , .).-qTI)T. Equa-
tion (2) describes xi,,q as a real-valued Markov chain on the state space
PR. The behavior of x,.. depends on the shape of the continuous func-

tion F.

It has been shown that multilayer neural networks can avoid the dif-

ficuitv called -curse of dimensionality" from which ordinary methods for
f'nction approximation suffer [8]. WAVe construct the continuous function

F by multilayered neural network as follows:

F[Xk-l 'J = V1½ (3)

there dI 1 M )"o) Oi = 6(07Virs .- - 02) is an output of ith
1

hiddden unit. 0(lr) - is a sigmoid function. V E R"' is anI + ex~p(-X-)
ourmut weight vector, Vi C- RP is an input weight vector connected to
the th hicden unit. Oi is a bias for ith hidden unit. 6 is a bias for output

unit. q is a total number of input units, and a2 is a total number of

hidden units.

The above model is called a neural network autoregressive model

(NNAR). This type of time series model has been applied to behavior

prediction of various systems [6]. Fitting the NNAR model to the given

tihe series is achieved bly minimizing predictive error using conventional

trauning alrorliifms.
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3 Stationarity of NNAR model
A sufficient condition for existence of stationary joint probability density

function of Markov chain (2) was given by Chan [7]. In this section we

show that NNAR model satisfies this condition.

If f in (2) is assumed to be decomposable as follows:

f(Xk-l,q, ek) = T(Xk-l,q) + S(Xk-l,q, ek) (4)

where T : Rq -- Rq, S : Rq+1 -+ Rq and an extra sequence zk is defined

as z, = T(z,-l) , z,, E Rq. Furthermore, we assume S can be written

as:

S(Xkl,q, Ck) = F[Xkl,q] + ek (5)

Under the following conditions Al.-A5., Markov chain defined by

(2) is geometrically ergodic, provided that f is continuous everywhere

and continuously differentiable [7]. If Markov chain is geometrically

ergodic, it always has a stationary joint probability density function.

Al. 0 = T(0), and 3K, c > 0 such that Vn > 0 ; starting with

z0 e Rq, II Zn .1< Ke-c 11 z 0 11, where 11 H1 denotes the Euclidian norm

in Rq. A2. ek has probability density function 7r(.) that is continuous

and positive everywhere. A3. F[.] is bounded over bounded sets. A4.

IM > 0, such that Vx, y E Rq, 11 T(x) - T(y) Jl< M 11 x - y 11. A5.

For some T > 0, El[I S(xk-l,q,ek) I1 given Xk-l,q = X] <_ T, Vx E R.

f in (2) can be rewritten as:

f(Xk-l,q, ek) =(0, Xk-1, Xk-2, , Xk-q+l)T (6)
+ (F[Xk-i,q] + ek, 0, , ,. , OjT.

Then, we can obtain a form (4) by defining T and S as:

T(Xk-l,q) = (O, Xk-lXk-2 ...",Xk-q+l )T, (7)

S(Xk-l,q, ek) = (F[Xk-l,q] + ek, 0, 0,'", O)T.

T satisfies clearly Al. and A4. Because ek is Gaussian, A2. is also

satisfied. The sigmoid function 0(.) is bounded over R, consequently,

for all m, Vi (i = 1,... ,rn), b(< oo) , there exists c < oc such that

IF[xk-l,q]I < c, then A3. is satisfied. From this and (5), and properties

of ek, we have

E[II S(xk 1,q, et) 11 Ix•. 1.. =x] = F[x] + E[ek] < c + • (8)

Substituting c + [t, for T, we can show that F given by (3) satisfies A5.

Hence, we established geometric ergodicity of NNAR model.
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and p(xk)is a marginal density function of joint probability density func-
tionl p(xk,q):

P(Ok) = ... f,)- P(Xkq)dxk-1 . dXkqq+i. (13)

We must know p(xk,xk-_) in order to execute numerical integration of

(11). In the case of r < q, the marginal density function of p(Xk,q) can

be computed directly as follows:

P(xk•,k-,) L P(xt,q)dxk-I ... dX•-_•+, (14)

d3k-r-, " " ", dXk-q+l.

In the case of r > q, we can construct a renewal formula using a property
of the Markov chain. Namely, from the (q + 1)th order joint probability
density function p(Xk-lq, Xk-r) we can derive P(Xk,q, Xk-) that has a
lag interval with one lag step longer than p(Xk-1,q, xk-,):

P(Xk,q, Xk-r) f- 7T(Xk - F[Xk-l,q])P(Xk1l,q, Xkr)-)dXk-q. (15)

Then, setting initial joint probability density function P(Xk,q, Xkq) as:

P(Xk,q,Xk-q) - (Xk F[Xk-1,q1)P(Xk-1,q), (16)

we can compute p(Xk,q, Xk-r) for all r(> q). p(Xk, Xk-r) is given as a
marginal density function of p(Xk,q, Xk- ):

p(xk, xk--) - .. P(Xk,q, xk_)dXk1 ... dXTkr,+ (17)

dXk-,k l ... dXk-q.

Finally, power spectrum can be represented in a form of discrete
Fourier transform of 2R(r):

P(w) = 2R(r) exp(-jwr). (18)

5.2 Bispectrum

Bispectrum B(w1 ,w2 ) is defineded as two-dimensional discrete Fourier
transform of third order central moment function 3 R(r', s):

B(Li,),W 2 ) = ~ 3R(rs)exp(-j(49r+w2 S)), (19)
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-where.

- c.S) 100 I)(w 'k c-, /1)

Pý(.T17,Xkr.ý XA._,)d1'kdXk-,JIXk- (20)

The third order joint probability density function I)(ckf C s.C 1': ) in

(20) can be calculated using following renewal procedure:
In the case of r < , < qK p(xe-,Xk.. ..- r5 ) is given as a marginal

dei>sit- flnliction of' p(Xk ,):

PO 'k,. - :A--,- k., 1•i.. .) (X... ,,,x •,) d~ k. - ...

dfnj. - +r I(IXk-r-- I ... 7L• l' i k-1-l .. .] X" -q + 1 (21)

In the case of (I K r <_ ,s, the (p- 2)th order joint probability density

functioll pr.,. ..ct, ,-) is calculated as follows:

P(Zk,,A .X ,,b J,Ž) 71 Or(xr - F[X i,_]) (22)

To set the interval between r and s an arbitrary length, we Ise the

follow.ing formula:

P(Xk ,-.r~. 7T(37k -[Y i])f(, x )dr/'(23)

wliero r = a. Then. for all r and .s, we can obtain p(Xkq, X k•, X,._ 5 ) bY
taking marginal densitY finction as:

( .. , ,.. ..t...) p(xk.,. rk• rXk 0) (24)

75 NTu _T_ eracal Exammple
In tris section. we present a numerical example of parametric estimation

of pov-er spectrum and bispectrum. As an example of the time series we

gelnerated following signIal:

J'A' = sio (ý0 k) + 0.,5 sin(29 '0/k) ÷C Ek (A- 0= 1. 2047) (25)

where. j is a Gaussian white noise: A"(0, 0.0025) and "CO = 3.14/5 _

,/5. Figure 1 shows the distribution of the data on the state space

(x.. : W). e trained the NNAR model with the structure 2-intput(lag

order). 7-hidden, and 1-output. Figure 2 shows the joint probability
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density function p(Xk, xk-1) computed by the procedure described in 4.
It can be seen that p(Xk, X- 1 ) well represents the complex structure of
the distribution of data (Figure 1).

Figure 3 shows the estimated power spectrum. The estimated power
spectrum has two clear peaks at Lo = (wo, 2w 0 ). This means that the
NNAR model can acquire the second order stochastic characteristics of
the signal correctly, while the linear AR model with the same lag order
2 can not detect two spectral peaks.

Furthermore, we estimated the bispectrum by the procedure men-
tioned in 5.2. Figure 4 shows the estimated IB(Loi,Wo2)1 2 , , _> 0, LO2 _>
0). The true bispectrum of the signal (25) has a peak at (Woo0). It
can be seen that the estimated bispectrum approximates well the true
structure.

-- • ? 2.0

0.
-2. 00, 22.0

Xk-1

• -- 0.0 -2.0

-2.0 0.0 2.0
Xk-2.0 0.0 2.0

Xk

Fig.l The state space plots of data Fig.2 The estimated stationaryjoint probability

density function

01.

00.8

0.6

-0.2 W'2//I:

0.0 0.2 0.4 0.6 0.8 1.0
11(10. 0.2 0.4 0.6 0.81 1.0

Fig. 3 The estimated power spectrum Fig.4 The estimated bispectrum

7 Conclusion
A method for parametric estimation of higher order spectra of time se-
ries using a nonlinear autoregressive model based on NNAR model is
presented. Advantages of the NNAR model as a universal time series
model are follows. As clarified in 3 for any finite weight values, the
NNAR model has always stationary joint probability density function.
Consequently, no special modifications of learning algorithm are required
in order to keep the model stationary. Arbitrary continuous function F
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with several variables in the difference equation (1) call be approximated

IY muiltilaver neural networks. Furthermore. nmltilayer neural networks

can ivoid so ctalled difficult'v "curse of dimeitsionalitY" iS].

C irrtl lywe are investigating the evahiation of the computational

error and sjtePding up the calculations. Bearing iil nlinti the enormous

povwar of flittre computers, the presented method can be one of the

stalllard signal processing techniques.
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Abstract A neural network classifier using fuzzy set representation of
pattern classes is presented. Network construction and learning is per-
formed incrementally in a single pass by building an aggregate of space-
filling regions that constitutes a simplified variant of the construction
known as Dirichlet tesselation (or Voronoi diagram). Each region is de-
limited by a set of hyperplanes and is endowed by a fuzzy membership
function that forms the basis of learning and recall. Experimental re-
sults concerning difficult recognition problems show that the proposed
approach is very successful in applying fuzzy sets to pattern classifica-
tion.

1 INTRODUCTION

Several models have been developed during the last years in an attempt
to combine fuzzy systems and neural networks. Some of them focus
on applying this synergistic combination to building efficient pattern
classifiers [5, 7, 9], as the application of fuzzy sets to pattern classification
has been considered for many years.

The fuzzy neural network presented here is an example of neural
network classifier that builds decision boundaries by creating subsets of
the pattern space. The creation of fuzzy subsets is based on the partition
of the n-dimensional space in a way that constitutes a direct adaptation
of the notion of Dirichlet tesselations, also known as Voronoi diagrams

0-7803-2739-X/95 $4.00 © 1995 IEEE
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or Thiessen polygons [1].
A Dirichlet tesselation of a set S of points (called sites) is a partition

of the n-dimensional space into convex polytopes. Each polytope which
is also called 'cell' or 'tile' belongs to one site of the set S and contains
all points of the space for which this site is the closest, or the one with
the dominant influence. Each cell is defined with respect to an arrange-
ment of halfspaces as the intersection of a finite number of hypeplanes,
which are the perpendicular bisectors of the segments joining pairs of
sites. From a given set of n-dimensional points classical Dirichlet tesse-
lation can be constructed by obtaining the convex hull of these points [1]
or by incremental insertion of the regions of these sites [3, 4]. Dirichlet
tesselations express the proximity information of a set of given points in
a very explicit and computationally useful manner that makes it appli-
cable in many diverse areas among which are biology, visual perception,
crystallography and archeology.

The application of Dirichlet tesselations to the design of neural net-
works has been considered recently. In [8] two neural network construc-
tion algorithms for pattern classification are proposed that rely directly
or indirectly on the Dirichlet tesselation of the space based on the given
training patterns. An efficient adaptation of the above algorithms is
presented in [6], whereas a systematic procedure for designing neural
networks following the same principle is formulated in [2]. In this paper
we develop an analogous construction approach which incorporates the
idea of fuzzy set classes by defining fuzzy decision boundaries for the
regions of the tesselation. The proposed scheme allows for efficient on-
line supervised learning using appropriately defined fuzzy membership
functions during both learning and recall.

A description of the proposed fuzzy classification network is pro-
vided in the next section, while the network construction algorithm is
presented in Section 3. Section 4 concerns experimental results from the
application of the approach to difficult classification problems. Section
5 briefly describes the extension of the model to the case of both contin-
uous and discrete attributes, and finally Section 6 summarizes the main
conclusions.

2 FUZZY SET CLASSES AND NETWORK

TOPOLOGY

Consider a classification problem with n continuous attributes, such that
the n-dimensional patterns belong to p distinct classes. By means of the
proposed construction scheme, we shall define a set of regions filling the
feature space such that each region is associated with exactly one from
the pattern classes. A properly computed fuzzy membership function
(taking values in [0, 1]) indicates the degree to which a pattern is con-
taimed within each of the regions. During operation, the region with the
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Figure 1: A partition of the plane

maximum membership value is selected and the class associated with
the winning region is considered as the desicion of the network.

Learning in the fuzzy classification network consists of creating and
adjusting regions and associating a class label to each of them. Each
region is characterized by a point, which will be called the site of the
region, and can be expressed as the intersection of a finite number of
closed half-spaces defined by hyperplanes that separate regions of differ-
ent classes. Regions corresponding to the same class can be overlapping.
In general, not all training patterns constitute sites of regions. Following
the principle of Dirichlet tesselations, the points of a region are closer
to the site of the region than to all other sites belonging to different
classes. This feature constitutes a relaxation with respect to the strict
definition of Dirichlet tesselations and implies a construction scheme that
prescribes no separating hyperplane between regions of the same class.
Figure 1 represents such a convex construction on the 2-dimensional
space, based on the Dirichlet tesselation principle, for a set of 9 input
points with three seperated classes (dotted lines would be present in a
classical Voronoi diagram).

When an input pattern a = (a 1..., a,,) is presented to the network
during operation, the corresponding membership function for each region
is computed. The membership function bi(a) for the ith region must
measure the degree to which the given pattern falls inside or outside the
region. This can be considered as a measurement of how far is situated
the pattern from all the hyperplanes which define the region. When the
pattern a is in the interior of the region and far from the hyperplanes
then bi(a) approaches 1, the value 1 meaning that the point is very
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Figure 2: Fuzzy decision boundaries

close to the site of the region. When the pattern falls outside the region
tlhen the membership value approaches zero, the value 0 meaning that
tbis point is close to some other site. A function following the above
o-7c'elines is the average value of the normalized vertical distances xh of

the p'ttern from all hyperplanes h supporting the region. Each distance
is normalized with respect to the distance Ih of the site of the region

froM oiherplane A.
Consider the function signo (a) which describes on which side of the

h m rplane A lies the pattern a. if it lies in the positive half space h+
we have shon (a) 1, else if it lies in the negative half space A- then
siwn;roa) = -1. Also consider the quantities vn, which take the values

or -1 depending o0 whether the site i is situated in the positive or
e half-space defined by the hyperplane A, respectively.
-Te membershio function taking values in [0,11 can be computed

follov':s:

thuH
b; (a)C ni ,.h (a) +-F

-ere H- is the set of hyperplanes defining the region i (having cardi-
n-L~t IAT ]) and m5 has the following form (Figure 2):

1 if Xh > !h and signh,(a) =1
n (U) -1 if Xh > Ih and signh (a) = -1 (2)

signj(a)xh/ih otherwise

Other choices can he made for the computation of the membership func-

ions, e.g. the form adopted in [5].
The fuzzy classifier can be implemented as a neural network that

exp'ots the fuzzy set structure and allows for efficient implementation.
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Figure 3: The Fuzzy Neural Network Classifier

Figure 3 illustrates the neural network that implements this approach.
It consists of three layers such that connections exist between successive
layers. The number of nodes in the first layer is equal to the number q
of hyperplanes that define regions. Each first layer node computes the
value of the function ma for every input pattern using equation (2). The
second layer contains as many nodes as the number r of regions. The
output of each node of this layer represents the membership value of
the pattern for the corresponding region as computed in equation (1).
The connections between nodes of the first and second layer associate
regions with their supporting hyperplanes and assume the values Vih

defined above. The last layer embodies nodes which correspond to the
set of p classes. The connections uji between the second and third layer
take binary values, such that uji = 1 if i is a region of class j and
uji = 0 otherwise. Each node of the third layer computes the degree to
which the input pattern fits within class j. The function that performs
this computation is the fuzzy union of the appropriate region fuzzy set
values. This operation is defined for each of the p classes as

r

cj = max[ujpb&(a)] (3)i--1

3 LEARNING AND CONSTRUCTION

Consider a set A of training patterns. The learning algorithm creates
a division of the feature space by appropriately constructing regions.
Each region is defined by hyperplanes that are successively created to
separate neighboring regions of different classes. Implementation of the
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below scheme requires the definition of the appropriate data structures
for holding all the information necessary during the construction.

At an initialization step, the -first two training patterns considered
(which should be of different classes) become the sites of the first regions
which are originally separated by a hyperplane (the perpendicular bisec-
tor of the segment joining the two sites). These regions will be restricted
in the sequel as new sites are created.

During learning, each training pattern ak is presented once and the
following general step is performed.

" First we compute the values of the membership functions bi(ae),
as defined previously, for all existing regions i. Then we find the
regions whose membership values exceed a given threshold value 0
(0 < 0 < 1), which is generally taken high (typically, greater than
0.7).

o If all the regions meeting the above criterion belong to the same
class as the presented pattern ak, no further action is taken.

" If one or more of the selected regions belong to classes different than
that of pattern ap, then the latter becomes a new site and its region
is constructed by drawing bisecting hyperplanes between this site
and its neighboring sites of different classes. No hyperplane is
created between the new site and sites belonging to the same class,
thus allowing -for overlapping. The neighboring regions of the new
region are successively determined by applying a simple adaptation
of standard techniques used in the creation of Dirichlet tesselations
by incremental insertion of sites [3, 4].

" The new site acquires its region by winning territory from the
regions of its neighbors (belonging to different classes). As some
of the already presented (non-site) patterns may be contained in
the affected regions, it should be checked whether such patterns are
now included in the newly created region. Thus, these patterns are
successively examined and if they are contained in the new region
they create their own new regions by winning territory from the
latter, following the procedure applied in the previous step for a,,.
Obviously, this construction of new regions need not take place for
all such points, since several of them may be covered by each newly
created region of the correct class.

4- EXPEPRLMENITAL RESULTS

"We have studied the proposed fuzzy neural network classifier on a variety
of difficult classification problems. We have tried to select databases
whose instances are defined on a high-dimensional space so that the
applicability of the Dirichlet tesselation approach on such problems could
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be evaluated. In addition, some of the data sets were noisy containing
hard examples so as to illustrate the operation and performance of the
fuzzy neural network classifier. To evaluate the effectiveness of our model
we have mainly compared it with the fuzzy min-max classifier [9].

The first data set is the Johns Hopkins University ionosphere database
which is a collection of radar data. The ionosphere data set consisted
of 351 feature vectors described by 34 continuous valued attributes with
two decision classes (either show evidence of some type of structure in
the ionosphere or not). The data set was divided into a training set
of 200 examples that were used to adjust the network hypeplanes and
convex polytopes, while the remaining 151 examples were applied to the
constructed network structure to estimate the performance of the pro-
posed fuzzy neural classifier. In all of our experiments we trained the
network for certain 0 values and then computed the percentage of correct
classification over the test set. Best results were found for 0 = 0.75. For
this parameter value the network consisted of 127 cells and the success
rate was 97%. On the other hand, using the same data set to train a
fuzzy min-max neural network classifier several experiments were con-
ducted for different values of 0. The best classification rate obtained was
95.5%

The second data set we used to train and test our fuzzy neural clas-
sifier was the Fisher's Iris data. Iris data is a collection of 150 four-
dimensional featute vectors in three separate classes, 50 for each class.
We considered a training set and a test set of size 75, each of them con-
taining 25 examples of each of the three iris classes. After a series of
experiments using different values of the parameter 0 we found the best
classification rate 97.3% for 0 = 0.75 in which we obtained 22 polygon
cells. For the fuzzy min-max classifier the best classification rate for the
same data set was exactly the same [9].

We have also used the James Cook University Thyroid gland database
in our model. Thyroid database is a collection of 215 feature vectors
consisting of 5 continuous attributes, such that the vectors belong to
three classes. Any of these three decision classes defines a prediction
of a patient's thyroid to the class of euthyroidism, hypothyroidism or
hyperthyroidism. The database is divided into 150 instances of first
class, 35 instances of second and 30 of last class. We used a training set
of size 100 while the remaining data set (size 115) was used as testing
set. Best performance was obtained for 0 = 0.8 (34 polygon cells) with
classification rate 94%. Training and testing the fuzzy min-max classifier
network with the same data sets we were able to achieve a success rate
of 90.5% using parameter value 0 = 0.082 (60 cells).

It must be noted that in all the experiments the choice of the value
of the parameter 0 was not very critical with respect to the success
rate as was the case with the fuzzy min-max neural network. There
were intervals of 0 values where the rate remained the same and only
the number of the hyperplanes and the convex polygons being created
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were different. Besides, while the value of 0 was increasing the network
structure (hypeplanes and cells) was reduced, and so we were choosing
the maximum 0 value of such intervals so as to achieve the least network
architecture with the best overall success rate.

5 TREATIPLG DISCRETE ATTRIBUTES

The model of fuzzy neural network based of Dirichlet Tesselations consid-
ers as basic assumption that all attributes take continuous values. Thus,
we are able to map the pattern space corresponding to each class to a
number of regions (convex polygons) by creating perpedincular bisectors
(hyperplanes) between sites of different classes. Nevertheless, when the
data set consists of both continuous and discrete attributes we cannot
treat the discrete features in the same way, and so it is necessary to find
another mode of operation.

Suppose that D, nD= lDl and C, nrc = C1 denote the set and
the number of the discrete and the continuous attributes respectively.
Let also DJ be the domain of each discrete attribute j E V. A n-
dimensional pattern a = (al, a2, ... , a,) having both types of attributes,
consists of continuous features aj for j c C and discrete aj C Di for
j E D. Each polygon i is described by providing the proper hyperplanes
with respect to the continuous attributes and moreover a set of attribute
values Dij gC D for discrete attributes j E P. It is obvious that the sets
Dij must be crisp, i.e., an element either belongs to a set (membership
value is 1) or not (membership value is 0). Including the above analysis to
the computation of the membership function of a pattern a to a polygon
i, equation (1) takes the following form:

1 1 1+

hEH,•D jED

<here a- denotes the subvector of a containing only continuous attributes
and ms(x) is the membership function corresponding to the crisp set S.
It must be noted that if a new input pattern ak is contained in a cell i
of the same class, i.e., no creation of new cell takes place, the crisp sets
D..; are adjusted as follows: D7JCU = Doid U akj.

6 CONCLUSIONS

WVe have introduced a new model of fuzzy neural network classifier by
representing fuzzy sets through a suitable partition of the solution space
into a number of convex regions following the principle of Dirichlet tesse-
lations. This type of network has the advantage of fast one-shot training
and is veery efficient for hard pattern classification problems as indicated
by lhe experiments. Further research is focused on the introduction of a
learning component for adaptively determining good parameter values.
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Dynamics of Assocrative Mernory

V7ii7th a Sef= consisteent Nolse
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Bucharest-Magurele, Rornania

Abstract

The Glauber dynamics of magnetic systems has been ex-
tended to the case of neural networks with a general odd re-
sponse function. We have derived a set of recursion relations
for the overlap parameter, noise average and noise variance
taken as macrovarnables of the process describing the dynam-
ics of associative memory. The retrieval process has been
studied then for a hyperbolic tangent transfer function by the
self-consistent signal to noise ratio method. It has been taken
into account the fatigue effect of the real neuron. The phase
diagrams of the retrieval process reveals an enhanced storage
capacity for a certain set of parameter values.

I kntroductior

The neural network models of associative memory are dy-
namical systems with associated attractors to the cognitive
events. A very well known example is the Hopfield model [1,2]
successfully carried out by Amit et al. [3] with the equilibrium
statistical mechanics tools. The dynamics of neural network
v..ith general response function is much more difficult to treat
than equilibrium properties because there is no general frame-
work corresponding to the Boltzmann-Gibbs equilibrium the-
ory. Even the stochastic master equation of Glauber dynamics
have been considered only for monotonic transfer function of
hyperbolic tangent type [7,8].
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Despite these difficulties the approximate treating of re-
trieval! process performed by Amari and Maginu [4] gave satis-
faction for various transfer functions [13-17], the only macrovari-
ables used being the overlap of the current state onto an em-
bedded pattern and the variance.

The aiim of this paper is to develope a, scheme to treat the
dynamics of associative memories with a general odd transfer
function including non-monotonic cases. In order to carry out
this task we have employed the method of Horn and Usher
[10] by using a. discrete time master equation describing the
time evolution of the network state. The rnacrovariables of the
process are: the overlap, the variance given through the signal
to noise ratio analysis [4] and the noise average. We here deal
with a. self-consistent extraction process of signal from noise
which finally yields to an enhanced storage capacity. This
mechanism of enhancing the storage capacity is different from
those involving the pseudo-inverse method [5] or the partial
reversed method [12].

The paper is organized as follows. In Sec.2 we develop the
general framework of the associative memory with a general
"transfer function [1.6] and successively we derive the general-
ized macrovariables recursion relations together with the time
dependent probability and the discrete master equation. In
Sec.3 we study the retrieval process of an associative mem-
ory having a, simple hyperbolic tangent output function by
following a self-consistent signal to noise ratio method. The
conclusions are discussed in Sec. 4.

2 Associative Memory Dynamics

The dynamics of the neuial network describes the change
Of variables in time. Let us consider a neural network of
A two-state neurons -(? = 1._ ) which inter-
act through the couplings T,_, given by the Hebb rule J._.
v = Q: .. The input-output function f sets the relation-
ship between the neuron's new state S.(t+i) and the previous
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N,ý(t) + aSS(t), with a the memory loading rate. In order
to include the fatigue effect given by the threshold contri-
bution [14] one takes the following recursion relation for the
noise term N (t+ +) =, Ai(t)+ c&(t + 1), with A < 1

Using the notation m = i1, the overlap parameter becomes
• (t + 1.) 1 frn(t) A ( t)), through rnultiplica tion
by 'I'- and statistical averaging.

Because the function f is an odd function in input, the
factor V = :L1 can be moved into the argument for a class of
input-output functions. (For exarrple in the case of f(x) =
tanh(ax)g(x•) we get. f,(rx) = tanh( r)g(x), g(x) being an even
function.) The -new expression of m.(t + 1) reads

m(t + 1) ={lf(() + (N1t)). (5)

Let us denote the value • N,(t) at location i by z and assume
this value distributed with the probability P(z, t) given by
[10]

P(z, t) 1 ( t)( - ); (6)

this probabi]ity allow us to write Tn(t + 1) as alt integral equa-
t io n

mn(t + 1) =dP(z. t)f(m•.(t) + .(7)

The value of z at location I changes in one iteration to
Az ± I with the probabilities

T((t) ) = I[ + f(()+ z)],

T Z 1 -I f( (t)+)] (+)

extended to the general odd inl)ut-output function. T'hes,
relations give us the discrete master equation as a recunrsion
relation

z - (I z -- ý
"P(z, t + 1 -) = I[7TI(rn(I), I 7.. A)

+ T ,m t), - - ... )P ( .... t ]. ( •
16' A
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Wince the most important featiures of the probability distribu-

Uion a re the average ( and standard deviation, let uis replace
P(zt) by an ex pression which contains these values and can
be easily mauipulated

1. 1
P(z,t) = •(z, -- r:(t)-~ u,(t)) + -6(z - ((0) + a,(t)). 10)

Rep)lacing the master equation by its frst two moments, i.e.,

expectation values of z and z2 we are led to the following set
of recursioii relations

MA t + 1) = -f(•n(t) - ((t) - J(t)) + -f(712(t)- ((t) + Cr(t)),

&t + t) = A((t) + carm(t + 1),

J7I't + 111 = A 2 ((T2 t± Aa(t) [f (r(t) - (7(t) - u(t))] +

Aa(t) [f(m•(t) - ((t) + a(t))] + 1 - i, 2 (t + 1). (11)

These expressions are different from those obtained in the
Amari-Maginu framework [4].

3 Analysis of Retrieval Process

The analysis of the retrieval process is carried out for a
hyperbolic tangent transfer function because the mechanism
responsible for the enhancemernt of storage capacity is not
caused by the nonrnoiotonic function as it was expected. Here
we deal with a self-consistent extraction of signal from noise
in a recurrent maner. The retrieval process exhibits for small
values of (7 more or less the same behavior as was obtained
by Arnari and Maginu [4]. The difference consists in the fact
that our model is one biologically motivated by the fatigue
effect and by the dynamical threshold incorporated in the
noiise recu rsion relation.

A more convincing argument that our model works as an
associative memory would be the attraction basin of a memory
state [16]. By plotting the time development of the overlap
parameter for T = 0.015, A = 0.1, a = 0.5 and initial overlap
values between m = 0 and m = 1, with increasing ratio 0.05
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in figure 2 was plotted the phase diagram T' = f(c:)

of the retrieval process showriug a. family of curves for A =

0,0.1,0.15,0.2 and 0.25. Each curve gives the separation
bonundary between FM phase and th.e pararmagnetic one. in-
creasing the A parameter to 1. the boundary approaches to 0.
the area of FM phase in o,-- - T coordinates is practically van-

ishing. Thus, the fatigue causes the reducing of associative
mernory perform arices,

4 Conclusion

In this paper we have extended the Glauber dynamics
Ltom ma.guetic systems to the case of neural networks [6] with
genera.] odd response functions [122-14]. The set of recursion
lelations of Horn and Usher [10] was extended to the macro-
scopic variables describing the dynamics of associative merrm-
ory retrieva.l process in the self-consistent signal to noise ratio
framework. We have solved the equations (1.1) for a hyper-
bolic tangent transfer function and one have plotted the phase
diagrams showing the boundary between the FM and pararn-
a.gnetic phases. Our phase diagrams of the retrieval process
reveals an enhanced storage capacity of t -, 1 when temper-
ature T -4 0 and the fatigue vanishes. Finally, a, continuous
time evolution set of overlap equationls for ru0onm1iorfotone nieul-
rons were analytically derived. The biological relevance of
nonmonlotonic firing rate was pointed out by Horikawa [18].
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RECURSIVE NONLINEAR IDENTIFICATION USING
MULTIPLE MODEL ALGORITHM

V.Kadirkamanathan
Department of Automatic Control & Systems Engineering
University of Sheffield
Mappin Street, Sheffield SI 4DU, UK
visakancgacse.sheffield.ac.uk

Abstract. In this paper, the multiple model algorithm is used in
deriving recursive algorithms for the identification of nonlinear sys-
tems. The radial basis function (RBF) networks with only linear
weights requiring estimation combined with the Kalman filter algo-
rithm forms the essence of the identification algorithm. Multiple
networks are used to identify the multi-modes of the system under
a Markovian assumption, the model estimation and selection being
carried out on-line. Both, 'hard' and 'soft' competition based esti-
mation schemes are developed where in the former, the most prob-
able network is adapted by the Kalman filter and in the latter all
networks are adapted by appropriate weighting of the observation.

1 INTRODUCTION

The problem of learning multiple modes in a complex nonlinear system is
increasingly being studied by various researchers [4, 10, 5, 2]. The use of a
mixture of local experts to model various modes of a system has been de-
veloped and applied to learning control by Jacobs and Jordan [4, 5], and a
conditional mixture density approach is adopted by Bishop [2]. The devel-
opment has centred around the problem of model identification from a given
set of block data, the model likelihood dependent on the input to the net-
works. A recursive algorithm for this static case would mimic the iterative
procedure required in the block estimation schemes, the recursion being an
approximation [5].

In this paper, we consider dynamic systems - developing a recursive algorithm
is difficult for the reason that the mode transitions have to be detected on-line
whereas in the block estimation scheme, search procedures allow detection of
the optimal transition point. However, unlike in the other modular network
schemes, the algorithm developed here does not use the mixing coefficients
or data conditioned prior model probability. The modelling of the multiple
modes in a nonlinear system is carried out by radial basis function (RBF)

0-7803-2739-X/95 $4.00 © 1995 IEEE
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can be chosen from a priori knowledge and estimation is restricted to a subset
of those outlined above. In functional interpolation, the number of basis func-
tions K is taken to be equal to the number of observations N and mk = x,
for n, k = 1, ... , N. The width parameter rk is also selected a priori leaving
only the estimation of linear coefficients. Also, the number of basis functions
can be chosen to be independent of the number of observations, such as in
on-line estimation, and their parameters pre-selected. Typically, the centre
parameters are chosen randomly to lie within some bounds on the input space
and the width parameter rk based on the centre nearest neighbour distance
[12]. Alternatively, for on-line estimation, the RBF centre parameters can be
assigned on-line to be a subset of the input observations with growing net-
work schemes [6, 7, 9]. The RBF networks are used for their property that
having chosen appropriate RBF centre and width parameters mnk, rT, only
the linear weights w need to be estimated for which fast, efficient and optimal
algorithms exist.

3 RECURSIVE IDENTIFICATION

Let the set of input - output observations from which the identification is to
be made, be denoted as,

2Ng= {z, I n ~ . . N (5)

where, ZNr includes all observations upto the Nth sample and z,. describes

only the nth input - output observation,

zn = {(X,Yn) I X, E:Myn (6)

Let the underlying process generating the input - output observations in a
nonlinear system be given by,

y =f*(x) + (7)

where 77 is the noise with unknown distribution and f*(.) : ?M • R is the
unknown underlying nonlinear function that needs to be learned or estimated.
For the system described by (7), under the assumption that the noise 77 is zero
mean Gaussian and under the assumption that the chosen model can approx-
imate the underlying function arbitrarily closely, the probability distribution
p(zn]p, Al) is Gaussian as well, ie.,

exp R IY,, - f(x,;>p)I}
p(z-, p, M) (2_7r)iR (8)

This is the likelihood of the observation z, for the chosen model AM, which
in our case is the GRBF network, and model parameters p. The vector
gn = [gi(xn), ... , gK(x,)]T and R0 is the variance of the noise 17. A further
assumption made is that the observations are independent and identically
distributed so that the likelihood of the observation set is,

N

p(ZNIP, MAr) = f- p(z, p, M) (9)
n=1

173



Off-line identification schemes estimate the optimal model parameters by
maximising this likelihood, or equivalently, minimising the log-likelihood
which in turn becomes equivalent to least squares identification.

Considering the RBF network with pre-selected RBF parameters mk, rTk, for
1 1 . K, the parameters that need to be estimated are the linear weights
If we assign the prior probability distribution for the model parameters

p(;vL.AA) to be Gaussian with mean w 0 and covariance matrix (positive defi-
nite) Po E EKx , Bayes law,

PAv<ZN!, M) = P(. [, M)P(w7M) (10)
p( " I M)

combines the likelihood and the prior to give the posterior probability dis-
tribution P(wiZNv, M) for the parameters which is also Gaussian and given
by,

Z ) p ( - v) TP l-} (11)

The term P(ZNj,[1) is known as the evidence for the model A4 in the obser-
vations Zlv. The final estimate for the weights are wNv.

For on-line or recursive estimation, the Bayes law relation becomes,

p(,;,1, A/l) - p(z•wM, -_w(,Av,_, M) (12)P(Z"1Z-,-, M) (2

and the above equation is applied recursively for n = 1, . . ., N. Under
Gaussian assumptions as outlined above, the Bayesian approach leads to the
Kalman filter algorithm as the on-line optimal estimator [3] for the model
parameters w. The Kalman filter equations are the following:

-Ten =--- -y -- _ gn. (13)

R- = R + g Tp__gn (14)

I - RS - jiPnign (15)
vwr, = vwn-i + enkn• (16)

P - (17)
e- is the on-line prediction error based on which the correction to vv is made.
k_ is known as the Kalman gain. Rn is known as the innovation variance
(see (18)). In this formulation, the Kalman filter estimation of the model
parameters is equivalent to the recursive least squares form. In order to
ensure continued adaptation a random walk model is introduced whereby the
ternm Q07 is added to (17), as in [6], [7].

Using the Bayesian derivation the evidence term, is given by,

p ~ z 5 ~ M , Z e) e p lRj e , 1 2 }( )

(2w) 1 RnjC
The above equation shows that the evidence term used in Bayesian model
selection fil] is computed recursively, but for the different priors R 0 , PO sam-
pled by the multiple models. This is also the likelihood of the n'h observation
given the model A/4 and the past observations Z 5 _.
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4 RECURSIVE MODEL SELECTION

The use of a single neural network for identification is based on the assump-
tion that the chosen network is appropriate to approximate the underlying
function and that the noise assumptions are valid with the relevant param-
eters, such as noise variance being known. In cases where the above fail to
hold true, the use of multiple models provides an improvement at the expense
of increased computations. Multiple Kalman filters with the multiple model
algorithm [1] being used for estimating the states in target tracking where
the underlying model for the target is linear but nonstationary, is such an
example.

In the case of neural networks, the use of multiple networks can overcome
the limitation of having to pre-select the number of basis functions and their
parameters, by using several networks with varying sizes and parameters.
It allows for the selection of appropriate basis functions on-line to a limited
extent, similar in spirit to the off-line approach based on the Bayesian criteria
adopted in [8]. Furthermore, different choices for the unknown noise variance
Ro, the prior weight parameter covariance P0 and the random walk model
parameter Qo can be made allowing a wider search for the underlying model.
The multiple model algorithm can be viewed as an on-line model selection
scheme using Bayesian statistics.

Let the total numbef of neural networks or models used be H. Applying
Bayes law gives the following relation:

p(MhlZ,) = P(zIMh, Zn-)P(MhlZn-) (19)

which can be computed recursively for n = 1, .. . , N. p(zlMh, Z,._1 ) is the
likelihood given in (18) and p(MAhIZ,) is the posterior probability of model
MAh being the true underlying model amongst the chosen H models, given
the observations Z,. The term p(z, IZ,- 1 ) is the normalising term given by,

H

P(Zn I =Zn -1 E p(Zn Mh, Zn.-i)P(MhIZn -1) (20)
h= 1

Since the quantities en and R, necessary for the computation of the term
p(z•IMh, Z,,- 1 ) are obtained from the Kalman filter estimator, all the terms
on the left side of (19) are known once initial prior probabilities for models
are assigned, for example as,

1
p(M hZO) = p(M h) (21)

The above algorithm (18), (19) combined with the Kalman filter estimation
equations is known as the multiple model algorithm [1]. Amongst all the
networks that are attempting to identify the underlying system, the identified
model is the one with the highest posterior probabilityp(Mh 1Z,7) at each time
n, and hence can vary from time to time, and predictions are based on this
most probable model.
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H•ARD APND SOFT COMPEjTITONT

One form of nonstationarity commonly found in systems is multi-modality.
For example, the speech signal can be viewed as a concatenation of signals
from quasi-stationary modes or states such as phonemes undergoing transi-
tions at various time instances. The multi-modal system is represented as,

(rc,) + if n {[ ,, ], [.n .}

fY(:) + if , n E (22)

1i if u if

,77hnre n ! [ :: ] is the first time-interval during which the lth mode is

determining the behaviour of the system (i stands for initial f for final). To
be general, the same mode can become active again in the future during a
second rime initerval [n2 ,2 ] and none of the time intervals overlap. Un-
der this description of the multi-modal system, the task of identification is
to estimate or approximate the underlying functions fl(.), f2•(.), .-. , f7-)"
This is made difficult by the need for each model to represent each mode
or state individually and hence the model parameters have to be estimated
on observations pertaining to that mode. This can easily be done if the
mode transitions are knowrn a priori, which in general is not the case. Hence,
detection of mode transitions must also be made along with the model esti-
mation. In block estimation or off-line learning, Levin [10] demonstrated how
an additional switching input is used to model a hi-modal system where the
s-:,:c•mg input signal is jointly estimated with model parameters iteratively.
If'h modular network scheme developed by Jacobs and Jordan [4, 5] makes
use or a gating network that chooses an expert network to model individual
modes. Both, block and on-line estimation schemes are used to determine
the relee-ant parameters in the expert network scheme, but it is derived for
sta-c systems.

To ia.... "ate the on-line identification of multi-modal dynamic systems, a first
order "i arkov assumption is made for the mode transitions. Given that at
te time instant n - 1 the given mode is j, it is predicted under the above
ass__ Dtion that the probability of the mode at time instant rn being his the

H
ans".•ion probability Pýj, W#ith H modes, T Pe=: i.

h=l

The preEiched probability of the mode being j at time n therefore is given by,

p-p.P (.A IZ Z- -Pj(4 1 Zi) (23)jif

This can be vievwed as the prediction stage of the model selection algorithm.
Tiven the observation z,, the correction is achieved through the multiple
ri-,,oe] . sl°o.ithnm of (19) with the following modification:
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where modification to the prior and evidence has been made. Since the poste-
rior probabilities of each mode effectively indicate which mode is dominant at
each time n, changes can then be used as means of detecting mode transitions.

The detection mechanism allows two possible methodologies to be used in
model parameter estimation for each modes. In the first method, only the
model with the highest posterior probability undergoes adaptation using the
Kalman filter algorithm while all other models are prevented from adapting.
This is the 'hard' competition. In the second method, all models are allowed
to undergo adaptation with appropriate weighting to reflect the modelling
performances as measured by the posterior probability. The weighting scheme
adopted is to modify the noise variance parameter R0 at time n for the hth
model to become,

RO (n) = - (25)

This value is used in the Kalman filter equation (14) at time n for each model
h. It increases the apparent uncertainty in the measurement output according
to how unlikely the model is to be the true underlying mode, by increasing the
noise variance term of the Kalman filter algorithm. In fact, this is the same
weighting that will be achieved in the maximum likelihood iterative estima-
tion procedure, the weight being the posterior model probability conditioned
on the data. This is a 'soft' competition. While hard competition assumes
mode transitions to be instantaneous, soft competition allows for transition
to take place over a time interval.

6 EXPERIMENTAL RESULTS

The experiments used a number of Gaussian radial basis function (GRBF)
networks with basis function parameters chosen randomly. The nonlinear
system chosen for the investigation is the quadratic map chaotic time-series,
where, the observations are generated by,

y, = 4 y - (1 - Yn -1) (26)

such that with x, = Yn-1, the underlying function f*(.) is quadratic.

Figure 1 shows the model posterior probabilities with increasing time and the
approximation error for each network over the input range x C [0, 1] for four
GRBF networks (Nets 1,2,3,4) with number of basis functions K = 3, 5, 10, 20.
The results show that the smaller network predictions are preferred in the
initial stages since their parameter estimates are less uncertain than for the
larger networks. The results also show that under similar identification perfor-
mance, smaller complexity model is preferred demonstrating the embodiment
of Occam's razor [11].

The multi-modal nonlinear system chosen for the experimental demonstration
is also based on the quadratic map and was used in [10]. The two modes are
given by the equations,

Yn = 4 Yn-1•(lYn-1) (27)
Yn = 1- 4yn-1(1-Yn-1)
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Figure 1: Uni-modal identification: (a) Model probabilities and (b) Approx-
imation accuracy (c) Actual and approximated functions, and (d) Absolute
prediction error (Netl +... +, Net2 x-.-x, Net3 o- -o, Net4 *--€, Under-
lying function o, multiple network scheme predictions *).

and the system undergoes mode transition after every 50 samples. Two GRBF
networks of size K 10 were used for these experiments.

0 .. l 1-,'1o 1n' 1 0 o, 1' l 0

Figure 2: Multi-modal identification ('hard' competition): (a) Model proba-
bilities and (b) Approximation accuracy. (c) Absolute prediction error and
(d) Actual and approximated functions (Netl - -, Net2 -, underlying func-
tion ... , multiple network prediction *).

Figure 2 shows that the mode transition is detected quickly and the appro-
priate hard switching takes place. The networks retain their approximation
to a certain degree at the end of mode transitions and the jump is due to the
nrst few observations of the next mode making the parameter estimates drift
a little before the switching takes place. it also shows that good predictions
are made from the hard competition multiple network scheme and that the
tw'o modes are identified by the RBF networks.

Figure 3 shows that the results for the soft competition case is similar to
the hard competition case for the example chosen. Since the hi-modal sys-
tem here undergoes instantaneous transitions, the hard competition is more
appropriate. However, the soft competition allows for transition over inter-
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Figure 3: Multi-modal identification ('soft' competition): (a) Model proba-
bilities and (b) Approximation accuracy (c) Absolute prediction error and (d)
Actual and approximated functions (Net1 - -, Net2 -, underlying function
• .. , multiple network prediction *).

vals, and it provides good results on instantaneous mode transitions as well.
The results demonstrate the successful operation of the algorithms on the
bi-modal nonlinear system used in these experiments.

7 CONCLUSIONS

Recursive identification schemes for nonlinear systems based on the multiple
model algorithm are developed in this paper. The neural network used is
the radial basis function (RBF) network in which the parameters that need
estimation are the linear weights. For uni-modal systems, the multiple model
algorithm is directly applied to the multiple networks that allow different
network configurations such as number of basis functions and RBF parame-
ters. This is similar to the problem of selecting a subset of appropriate basis
functions to approximate the underlying function. For multi-modal systems,
a first order Markov assumption for mode transitions is made to facilitate the
development of the algorithms. The transitions are detected using the poste-
rior probability of each model representing the observations. Two methods of
identification algorithms are developed, where once detection is made, esti-
mation of model parameters is based on either 'hard' or 'soft' competition. In
the former, only the mode with the highest posterior probability undergoes
adaptation by the Kalman filter and in the latter all modes are adapted by
appropriate weighting of the observation.

It should be noted that the mode transitions considered here cannot be pre-
dicted beforehand and is a random event. The model probabilities computed
based on performance over time. This is in contrast to the modular network
schemes of [4, 5, 2], where, modes or experts are identified based on the state-
space by the gating network and hence the transitions could be predicted. At
present, investigation into combining both approaches is being carried out.
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We consider a linear, one-layer feedforward neural network per-
forming a coding task under noisy conditions. We determine
the family of synaptic couplings that maximizes the mutual
information between input and output distribution. Optimiza-
tion is performed under different constraints on the synaptic
efficacies. We analyze the dependence of the solutions on input
and output noises.

INTRODUCTION

A feedforward neural network of a given architecture provides a cod-
ing of its input data. In this work we consider a one-layer linear network,
and we are interested in the network configurations (i.e., the structure
of the synaptic couplings) which are able to resolve as many features as
possible of the input data distribution, under noisy conditions. Finding
such "optimal" codings can be useful for both the statistical applications
of neural networks and the neural modeling of early sensory processing.
Works concerned with several aspects of this problem can be found in

[1, 2, 3].
The data, representing the environment, are generated according to

some probability distribution and sent to the network as its input. The
network updates its synaptic weights in an unsupervised way, according
to a given rule, possibly inspired by an optimization principle. Several
alternatives have been suggested. Oja [4, 5] proposed a Hebbian updat-

0-7803-2739-X/95 $4.00 © 1995 IEEE
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ing modiflied in such a way that the couplings can not grow indefinitely.
This rule produces synaptic couplings, between an input layer with N
neurons and an output layer with p neurons (p < N ), that converge to
values that span the same subspace as the p principal components of the
input data distribution [6]. However, the effect of noise in the network
is not considered. Sanger [7] has given a different rule that converges to
a solution with a similar behaviour.

An altetiiative method is to use optimization criteria based on infor-
ination theory. For instance it has been argued [1, 8] that the network
builds an efficient coding by minimizing the redundancy in the data,
a criterion that tends to decorrelate the output activities. A related
procedure, the infomax principle, maximizes the information that the
output has about the input [2]. Several authors [9, 10, 11, 12] have con-
sidered the maximization of the mutual information in a linear channel
vwith noise and, under some hypothesis, they exhibited a solution for
the optimal couplings. These works, however, leave several points to be
clarified, such as the details of the solutions and their stability, and the
role played by the differeint possible constraints imposed on the synaptic
c onfigurations,

In this work, ursing notions derived from information theory, we char-
acterize the optimal solutions for the synaptic configuration. In par-
ricular, we determine the family of synaptic couplings that maximizes
the mutual information between input and output distribution. This
optumizatieoni is performed under different assumptions on the allowed
synaptic configurations. We study analytically in detail the dependence
of rhe solutions on input and output noises in the case in which the in-
put distribution is gaussian. For this case we perform a rigorous stability
analysis of the solutions. A brief account of preliminary results in this
direction has been given in [13], while a fill account of the calculation
is given in f14i.

*TSI-d MODEl

On general grounds, an information channel, tiansforming an in-
put (source) set of units g- {•,..., N} into an output set V
{, . .1., I1 }, can be characterized by the mutual information I given
by:

I-( C) P (, og P d) ,
P(V)P(ý)

where we use the same symbol P to denote the different probability
distributions. For details about information theory see, e.g., [15].

We consider a situation in which the actual realization of the infor

i-ation channel is a neural modruile, as Figure 1 illustrates. The element
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P(Vý): output *h * f& * O*

P(V16): noisy channel

P(C): inf ...... tio so..urce 00

Figure 1: The neural network as information processor.

fij of the pxN matrix J connects the input unit ýj to the output unit V/;

for later convenience we define the N-component vectors _, i = 1, . . . p:
the elements of f1 are the connections Jjj, j = 1 ... , N, from all the in-
put units to the i-th output. We consider only the case p < N.

The input and output variables, ý and V, take on continuous values,
and we assume a linear transfer function for the neurons in the limit
of noiseless channel. In the presence of channel noise, characterized by
a parameter b, we assume that the conditional probability distribution
P(V ý) is the gaussian given by:

P(Vj1) =( rbp/2 exp -{ - 1= j ) 2} (2)

that gives a linear deterministic channel for b --+ 0. This expression has
to be modified if there is also an input noise. We assume that there is an
additive gaussian noise P in input, such that the input to the j-th input
unit is ýj + v•, with P uncorrelated with 0 < vj'j >= 0, < v >= 0,
< Viv, >= (bo/2)6bj. In this case (2) is replaced by:

P(vl ) 1
uiOrP det[blp + boJJT]

exp {- (V - J&) . [bl, + boJJT] 1 (17- J), (3)

where we have adopted matrix notation; 1P is the unit matrix of dimen-
sion p, and jT is the Nxp transpose matrix of J.
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W'e must make assumptions about the environment; we assume that
the input distribution is a gaussian, characterized by the correlation
matrix C defined by <•i~k >= (1/2)Cik. Since I will not depend on
< >, we also assume for simplicity < $ >= 0. Therefore we have:

1 exp (- t)(4)
dVtCC- e

Now the output probability distribution P(v), needed for the computa-
tion of I-, can be easily computed. Finally we obtain the result for I,
which is:

1= Ilog det.[bl + )(bt C)J('2 det [b!i, boJJT]

The base of the logarithm simply determines the scale of T; we can
therefore take the natural logaithm.

We limit ourselves to a discussion of the properties of the J con-
figurations maximizing I, focusing in particular on the effects of both
input and channel noise. We do not consider here any particular dy-
namics leading the is to the maxima. Several authors (see, e.g., [3)
aid references therein, and [2]) have discussed a possible biological rele-
vance of maximizing the mutual information in early sensory processing
pait %Vay s.

It can be easily seen that, if b __ 0, grows asymptotically (to a
finite value if b0 D 0 or to infinite if b0 0), provided the Js are al-
lowed to grow without limit. To cope with the general case, in order to
ionannize I, we need therefore to limit the growth of the Js; a possibil-
it, is to redefine the cost function of our optimization problem adding
a -penlty-" damping term: I - I - (p/2)Tr(JJi), where p is a
positive par~ameter: this added term can be generically interpreted as a
tendency of the connections Ji to "forget". Another possibility is to
in' pose a constraint on the is that prevents their unlimited growth; we

anaIyze the case in which a real constraint is imposed on the is, natmely

alotal constraint of the form 7_ 12 = o, where c is a constant. We
cac: theni have an indication on how the features of the optimal solutions
t!•at v find, depend oti the particular strategy that we choose to limit
L growt-hl of the Js.

xe v`il show few details about the calculations for the damped case,
1h in the case of the global constraint, we will only show the differ-

e1Ces Ira01 tile first case.
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For the damped case the function to be maximized is now:

1 det[blp + J(bolN + C)JT] 1
Iz-log -~pTr (jjT). (6)

2 det[bl4 + boJJT] 2

We note the important property that both _- and ± are invariant under
orthogonal transformations J -- AJ, where A is any orthogonal pxp
matrix. This means that the points corresponding to a given value of ±
cover an hypersurface in the Nxp-dimensional space of the Js, and that
they are connected by orthogonal transformations. We remark that the
transformations A are not rotations in the space of the N-dimensional
vectors Li, but act on the p-dimensional space of the columns of the
matrix J. This invariance property is used throughout all the derivation
of the results. To find the maxima of ± we first look for its fixed points,
and then, by a stability analysis, we determine which of these fixed points
are maxima. Each fixed point is actually an hypersurface, due to the
invariance property.

Fixed Points

The fixed points are given by the following matrix equation:

8 - Pu- = .o (7)

Computing the derivative of I we find, after some rearrangements:

JC = (bl +- boJJT)pj +- jCjT(bl +- boJJT) 1 Jbo +- jCjTpj. (8)

Now define F as the subspace of RN spanned by the vectors J, i =
1, . . p at a fixed point (the dimension of F is so far unspecified); then
consider an N-component vector X C FP and right multiply (8) by X;

from the fact that J1 = 0 by definition, we obtain:

jcC = o Cc r (9)

This means that F- is an invariant subspace of C; since C = CT this also
means that P is an invariant subspace of C. So our first result is that
at the fixed points the vectors A lie in a subspace spanned by (a so far
unknown number of) eigenvectors of C.

It can be proved that, at the fixed points, the same orthogonal trans-

formation simultaneously diagonalizes the symmetrical pxp matrices jjT

and JCJY . Therefore, in any hypersurface in J space where I is an ex-
tremum, there is a point (apart from permutations of the vectors I),
where the matrices jjT and jCjT are both diagonal; we can loosely say,
for short, that when we are at this point we are in the diagonal base. We
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continue the study of the properties of the extrema of ± in the diagonal
base. In this base jjT - D and JCJT ' D1 , where P and D1 are
diagonal pxp matrices; we denote their elements by: DPi - b0 fi, and

-ZJ - 613 a,- Notice that fi J 2 in the diagonal base. We right mul-

tiply (8) by jH, and write the resulting equation in the diagonal base,
to obtain:

P 1 = (61p -IL boEP)pP + P1 (b1, +I boD)f-boDP pP1 P. (10)

It can be proved that in the diagonal base the vectors J2 are eigenvectors
of C corresponding to eigenvalues Ak(1 ), and that ai = Ak(i)fi. The value
A'(1) is so far arbitrary, the only condition being that different i are
associated to different k', since jj T is diagonal. The eigenvalues of C,
all positive, are numbered such that A, > A2 > ... > Avy > 0. Now (10)
gives an equation for fi. For each i, this equation always admits three
real solutions; one is always zero, one is always negative, and the third
is positive if:

pb < Ak(i); (11)

if this expression is not satisfied also the third solution is negative. Since
negative solutions for fi are not acceptable, we are left, for each i, with
a choice between the solution fi = 0 and the positive solution, provided
(11) is satisfied. The appropriate choice to be made is determined by
the stability analysis.

Stability Analysis

We give in the following an outline of the procedure, omitting the details
of the heavy algebra involved.

To determine, among the fixed points, the maxima of t, we perform
a stability analysis. -More precisely, we write the matrix expression

/J=a7= - PJ' (12)

where AJ is a finite variation of J in which each element Jij changes by a

quantity equal to the component of the gradient of - on the axis labeled
by (i, j) of the Nxp-dimensional space of the Js. In (12) we substitute
for J the generic fixed point plus a small perturbation, i.e., denoting by
JO the generic fixed point solution, and by a the perturbation, we put
C JO + a. We linearize the resulting equation keeping only the terms
of the first order in the perturbation; we then project the variation of
C onto the possible directions in C space and verify in this way if that
fixed point is stable. As before, we work in the diagonal base.

We multiply (12) by a complete base of the N-dimensional space,
thus exhausting all the possible directions in the J, Nxp-dimensional
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space. For convenience we divide the process in two steps: first we
project onto a complete base of F' and then onto one of P. At the end
of this analysis we can determine which of the fixed points are stable.
In the next subsection we show the characteristics of these stable fixed
points.

The Stable Fixed Points

We define the number m, determined by the number q of eigenvalues of C
which are greater than pb: if q < p, then m = q, otherwise m = p. Above,
studying the generic fixed point, we have seen that, in the diagonal base,
each fi is associated with an eigenvalue Ak(i) of C; besides, if pb < Ak(i)
we have the freedom to choose fi = 0 or fi > 0, otherwise only the
solution fi = 0 exists. The stability analysis show that the stable fixed
points are those for which:

In the diagonal base, m vectors fI are associated with A 1,..., Am,
and the corresponding fi are positive; if m < p, the remaining
(p - m) Ji are zero. All the other J configurations where _T is
maximum can be reached performing an orthogonal transformation
J - AJ. As a consequence, in a generic base, p - m vectors Ji
are linearly dependent on the other m. The conclusion is that the
vectors Jt, i = 1,...,p lie in a subspace F spanned by the first M
eigenvectors of C.

It has to be noted that when the channel noise b increases, higher and
higher principal components are destabilized: in the diagonal base more
and more vectors J• go to zero, while in a generic base the decrease of
dim F shows up by the decrease of the number of linearly independent
vectors. In particular, when pb > A1 , all the vectors ft are zero. The
input noise b0 is not relevant in the determination of the noise thresh-
olds, but only in fixing the value of ±, in particular at the maximum.
Another point to be noted is that in the diagonal base the output dis-
tribution p(V) is factorized, and the non-zero Jt produce at the output
the projection onto the principal components of the input distribution.

In Fig. 2 we show, for the optimal network, in the diagonal base, the
output distribution p(V) and the conditional distribution p(V16.

The Global Constraint

Now the function to be maximized is I itself, but under the constraint
Zij JY1 o -, that means that the sum of the square moduli of the vectors

J1,..J., is constant. We notice that the expression which is to be kept
constant can also be written as TrJJT; from here we see that, like 7,
this quantity is invariant under any orthogonal transformations A. This
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cide7 e--ds eti thie ,alue of 6: it can be coniputed that the dim-ensionl

tsr f b < (h)p A, E 1  Increasing be one crosses succes-
" "heF Lfit shohds at v1iiichu the dimension of' the space increases

0-, o-lNLi to tNIe valuLe p



To summarize, the maximization of IT under the global constraint
leads to J configurations that have the same general properties as in the
damped case. The main difference is in the determination of the noise
thresholds, where the dimension of F changes. Now both the channel
and the input noise, b and b0 , are relevant.
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Abstract-
Discrete-time models whether linear or nonlinear, often implicitly use the shift operator
to obtain input regression vectors. It has been shown recently that the significantly better
performance can be obtained in terms of coefficient sensitivity and output error by using
alternative operators to the usual shift operator. These include the delta and gamma opera-
tors. In this paper we introduce second order pole-zero operators which have more general
modelling properties than those previously considered. We provide some observations
on the behaviour of the operators, considering representational issues and convergence
chacteristics in particular.

1 INTRODUCTION

In neural networks applied to signal processing applications, various approaches have
been proposed to combine the usual linear filtering methods with the nonlinear function
approximation capabilities of neural networks. A common method is to simply intro-
duce regression vectors 1 defined as u(t) = [u(t), ... , u(t - M)]T for some input signal
u(t), to a network architecture such as a multilayer perceptron. This is equivalent to
prefiltering the input data by linear filters. An extension of this approach is to allow
linear filters to be used in each of the synaptic connections in all layers rather than just
the input layer. [3, 4, 33, 34].
Agarwal and Burrus [1] proposed the use of an alternative discrete-time operator to
replace the shift operator. Their idea was to introduce the delta operator defined as 8

2- where A is the discrete-time sampling interval. Since then, this operator has been
considered in linear filtering, estimation and control [13, 21, 22, 32].
Recently, de Vries and Principe [10, 11], have proposed an approach to modelling time
series data, where instead of a simple time-delay input window constructed by means
of the usual backward shift operator (defined as z- (1 ) • (I - 1)), first order filters,

called gamma filters, have been proposed. The gamma operator is defined as y
(z - (1 - c))/c.
An extension to the basic gamma operator by introducing complex poles, was given by
[29]. In this case, the second order operator is derived by considering the usual gamma
operator and replacing a shift operator function and feedforward gain within the gamma
operator by the initial gamma operator function. This results in an operator having a
zero at z = 1 - c, and a possible pair of complex conjugate poles. This operator is
defined as

cl [z -(1 - cl)]
2 (1)2 CS[z (1- C)]2+ C2 I

'The term regression vector is used in system identification literature to denote the input vectors.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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where 0;, i = 1,2 are parameters of the 72 operator. The results in [29] indicate
some success with this method, however it was observed that a multimodal mean
square error surface may occur in some modeling situations. In order to overcome
this, a subdivision search strategy was proposed, allowing the operator coefficients to
be trained first, followed by the neural network, and then finally training all weights
simultaneously.
in the "/2 operator proposed in [29], while there may be a complex pole pair within
the unit circle (if (1 - cl) - c2 < 1), there is only one zero which lies on the real
axis. This means that the operator is only capable of producing either low pass (for
o < c] < 1), or high pass filtering characteristics (1 < cl < 2).
In this paper we introduce first more general second order operators. Some pertinent
observations are made on the behaviour of some of operators which are capable of
providingll a more general transfer function characteristic (viz, bandpass, bandstop,
notch).
It is useful to define some criteria for selecting one operator over another. A first-choice
foa this has been the improvement in mean-square output error (MSOE) obtained by
using the operator in a learning algorithm [6, 13, 26, 27]. The precise reasons for
the improvement in MSOE improvement still require some elucidation. It is known
that a large eigenvalue spread will lead to poor convergence of parameters in on-
lie estimation, while significant off-diagonal elements can cause a convergence to a
non-optimal point [15].
in the development in [15] it was assumed that the operators contained no adaptive
pa-•maeters. However, in this paper, we propose to consider the implications of using
(i) a range of possible operators, specifically, we are interested in the use of second
order p-ole-zero operators, and (ii) allowing the operators to have parameters which
We may require to be adjusted on-line. Further, we are concerned with issues in
identification of nonline'r: dynamic models, which consists of some linear dynamic
:nnut (prenrecessing) stage, i.e., this is usually a time-delay input window, but in our
case vye centre the discussion on using alternatives to the shift operator; followed by a
neural network structure and possibly additional dynamic structures.
in hi nave- we consider representational issues of the operators and some initial
conside-ations of the convergence chacteristics of the operator models. The issue
of persistence or excitation of the input signals is raised, and how it relates to the
coo a-cenca :of nonlinear neural network models. We indicate conditions under which
-pLrsistnce of excitation applies to linear dynamic parts of neural network models.
'7 stress at this point that the analysis presented here is not generally applicable
te s 3 em-el network structures, but rather a subclass of models which includes
br-as dynam-c (in particula-r, input preprocessing) sections. The general problem of

c-se e a1 exitation for neural networks has not been discussed widely, ad there
DI v i '. l ttleown results.

Cn oc he major aims of this paper is to show that there is a need to consider carefully,
;rrzpicaions operaiors have in the overall convergence of the linear dynamics in a
ra-:4 S a esul ss r-e strictlr true fore linear system, however our conjecture is that
h-as se prinCiples will apply to nonlinear systems which contain linear "sub-models"

- r-cr -unap-am-crlcizn'rion to adequeately model some unknown system.

- 0PPF IZ u,(::DL" Aa-7917LTURZS
-. 7-72.D' T,'7]' -'D,'e E L j

_C setion, ah des ethe ne-r netwvork architecture and associated operators
- --S -- h" -ennraiiyes the oseal dusere-tie-,e l oneer mving

'an 'is .giver h

-= )0x'(i (2)
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M

G(v,9) = Lbiv-
/=0

(3)

where v-1 is a generic operator. This operator may be defined as v-= {z= , 5-
7-' - }, which are the shift, delta, gamma, and gamma(2) operators respectively.
The forward equations for the model are

M

•)(t) = Lbiui(t) (4)

where we define

,,o(t) X (t) (5)
Uti(t) A-- _-1 Ui -1 (0) (6)

Thus we can define the regression vector ii(t) [u(t), Vu(t),..., -u(t)]T.

2.2 Nonlinear Multilayer Models
A nonlinear model may be defined using a multilayer perceptron (MLP) with the v-
operator elements at the input stage. This model is termed the v-operator multilayer
perceptron or MLP(v) model. An MLP(v) is defined in the same manner as a usual
MLP with input vector u(t).

2.3 Operator Preprocessing Stage
In this paper we focus on the effects alternative discrete-time operators have on the
covergence of model parameter estimates during learning. The model parameter es-
timates we are primarily concerned with in the first instance are those of the linear
dynamic sections in the model. Our conjecture is that in terms of obtaining a good
nonlinear dynamic model, it is necessary to properly model these sections in order to
obtain a good nonlinear model, and that the issue of persistence of excitation normally
considered for linear model estimation also requires consideration in this framework.
It is known, (and described in more detail later), that model convergence is strongly de-
pendent on the conditioning of the covariance matrix R, of the regression vector u(t).
The regression variables we consider are obtained from the output of the operators2 . In
particular it is shown that the spectral characteristics of the operator V(z, 0) influences
the conditioning of Rn. For that reason we propose a general operator capable of
providing arbitrary location of poles and zeros. A general operator model to do this is
defined by

NHI (z)z - 0 )(z - 13) (7)
S' (Z - ai)(Z 01;e)

where a, /3i are the complex poles and zeros. Interestingly, a version of this operator
has been proposed in the context of frequency transformations for digital filter design
[9], where the transformation is all-pass and the unit circle is mapped onto itself. In
our development, we will primarily consider the special case where i = 1.

2 As a means of simplifying our approach to convergence in both the operator and other possible linear

dynamic section in the neural network, we assume white gaussian noise input to the system, and consider a
nominal regression vector consisting of only the operator outputs.

"193



The operator structure we consider therefore is defined as

It - Z 2 +_]_ 7.CzZ +} 7 2

z2 + VP Cp z + r"2

vwhere rp, r, are pole and zero radii respectively, while the pole frequency and zero
freqoencies are given by wi = arccos (ci/ - 2)i, i = z, p. In contrast to allowing only
low pass or high pass spectral characteristics as is the case for the gamma(2) operator,
this po!e-zero operator allows arbitrary positioning of complex conjugate poles and
zeros and can therefore implement bandpass, bandstop, notch filters etc.

3 OBSERYAT¶ONTS ON THE BEHAYMOUR OF THE OPERA-
TORS

31 Algebraic Operator Constraints
The following observations are made concerning the pole-zero characteristics of the
operators under consideration. These results are relevant in understanding possible
convergence problems discussed in the following section.

0.1 A single - 2-operator is not capable of producing complex zeros. However, com-
plex zeros may be obtained in the overall model through the interaction of the
operator elements.
By inspection, in the 72 -operator transfer function in (1), it can be seen that since
c1 E 1?, the zero must be on the real axis.
Is there a relationship between the real axis zeros, and the poles ? This question
is answered in the following observations.

0.2 The -12-operator has a single zero given by Z = (1 - cl), and poles given by P1,2
(I - cl) ± jci c/2. Thus, the poles and zeros are constrained to move identically
in terms of the real axis coordinate.

0.3 The poles and zero of the p2-operator are constrained such that increasing cl
causes a decrease in the position along the real axis of the poles and zero, but
simultaneously causes an increase in the imaginary axis coordinate according
to the square root of the coefficient. Adjusting c2 affects only the imaginary
component of the poles, however this results in a simultaneous shift in the
radius and angular position of the poles, where r = v!(1 - c2 )2 + Ic2, 0

arctan( -1j-). Coefficient adjustments therefore affect the poles and zeros in a
nonlinear and nonsymmetric manner.

0.4 The poles of the 7z-operator will occur in a complex conjugate pair for c2 7! 0.

0Z The angular frequency and radius of the p-operator poles and zeros are inde-
pendently adjustable. Thus, learning algorithms are able to perform pole-zero
updating directly if required, rather than coefficient updating.

0.6 Second order p-operators can be structured in a coupled-form [17] to allow low
sensitivity between coefficients and pole/zero positions.

0.7 The p-operator may be constrained in numerous ways in order to obtain specific
frequency domain characteristics, e.g. a notch filter is obtained as

tl-1-2 + cpz + I

Prnotch z 2 + 7ýpgpZ +[ c r2 (9)
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It is possible to make the following observations about the notch operator in Observation
0.7:

0.8 Complex conjugate pole pairs are defined for the P, otch-operator, when -2.0 <
c < 2.0. A pole on the real axis occurs when -2.0 > c > 2.0.

0.9 A pn ot0 h-operator which models poles on the real axis will be nonminimum phase.
Thus the Pinotch operator model is likely to have difficulty in learning inverse
models of systems which have real axis poles.

This is shown as follows. Consider the system polynomial B(z) = z2 + cz + 1.
We wish to find conditions of nonminimum phase for c i 2.0. Let the zeros
of B(z) be given by iB = 0.5(-c ± /c 2 - 4.0). Hence let the zero radius in
the complex plane be r, where r2 = 0.25(c2 + Vc - 4.0). Thus, for c > 2.0,
r2 > 1.0 and the property is evident.

Viewing the root locus plots of the operators as a function of the operator variables would
indicate these properties more clearly. There are fundamental differences between how
the y2-operator and the f-operator model zeros on the real axis. It would be of interest
to understand how this difference relates to modeling systems which require a pole on
the real axis.

3.2 Convergence and Persistent Excitation Conditions
We now move our attention to considering the convergence aspects of the operator
models. For a multilayer network with an input time delay window, it can be easily
shown that the time-delays and weights going to each node in the first layer form
separate FIR (finite impulse response) filters Gj (z) j = 0, ... , N, from the input signal
x(t) (uo(t) = x(t), to the outputs Yj (t), the activations of the N1 first layer units.
As in the usual system identification approach [19], we make the assumption that the
dynamics of the model must approximate that of the system sufficiently well in order
to obtain a good approximation. This may not be strictly true due to the action of the
nonlinearities in the network, and the magnitude of the incoming signals. However for
the purposes of our discussion, we restrict the analysis to this "tighter" assumption for
the following reasons.
In the course of this analysis, we assume that there may be dynamic filter structures
either within the network structure itself (e.g. such as in locally recurrent networks),
or occuring after the output of the network. Further, it is likely that there will be some
neurons in network structures which do operate in the linear regions for some periods
of time whether due to the input signal amplitude, or the input weights.
Thus, we stress that for instances where the neurons are driven well into the nonlinear
range, the considerations we present in this paper are not necessarily directly applicable.
We conjecture however, that in order to model nonlinear dynamic systems appropriately,
it is necessary to consider the implications of persistence of excitation associated with
the linear portions of the overall model. We consider that the assumption that the
nonlinear components of, for example, an MLP model with dynamic input structure,
and possibly some dynamic output structure, will cause there to be no need to admit
persistence of excitation conditions to the overall model convergence results, to great
to make at this stage. In fact, it is has been observed in the course of simulations of
dynamic locally recurrent networks, that in many cases there are units which perform
only linear processing [8]. Thus there is evidence to suggest that in modelling "block-
oriented" nonlinear systems (i.e. constructed of discrete linear and nonlinear functional
blocks) [7] using dynamic neural networks, it will be necessary to consider convergence
aspects in this framework. The principles of analysis presented here can be regarded
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A relationship can be found between the power spectral density S(W) of the operator
transfer function H(z). It can be shown [18] that

X(. = ...__(R_) < .. (~) (13)X(R• = ,A,(R_•) -< S_,(H(w))

Thus, the covariance matrix R,,, can become ill-conditioned from certain types of
operators are used. For example, if H(z) has zeros on or close to the unit circle, or
Smin -+ 0, then Ami,, ---+ 0, hence X (Ru ) --+ oo.
The following property has been derived by Stoica [28] which is particularly relevant
here.
Property P.3 [31]
For y(t) = H(z)x(t), if H(z) has zeros on or close to the unit circle, then the M x M
covariance matrix RYY will be ill-conditioned for large values of M [28].
Although the above conditions apply to all linear operators, there may be some advan-
tage in using second order pole-zero operators, in the sense that complex conjugate
poles and zeros can be directly and easily modelled. This direct control over the fre-
quency response characteristics means that we can better manipulate the eigenvalue
spread of the covariance matrix, given some particular input signal. This would allow
better convergence properties to be obtained.

4 IMPLICATIONS OF THE OBSERVATIONS

In this section we present examples of the implications of the convergence analysis
properties described in the previous section. It is possible to foresee problems that
could arise in either of the following circumstances:

1. The incoming signal is not persistently exciting.

2. The operators have zeros at locations on the unit circle which cause the operator
output signal ui (t) to lose persistence of excitation.

3. Either or both of the above conditions cause the covariance matrix to become ill-
conditioned.

Example 1.

Suppose we have an operator Hi (z- 1) with small S,,i,, or the incoming signal resulted
in a small S,,.in,, then this will cause poor convergence. From this we conclude that
some caution may need to be exercised in using filters for operator structures resulting
in this condition.
Example 2.

Suppose we have a number of cascaded operators Hi(z- 1) (i=O,1,...M) each of pos-
sibly differing filtering characteristics associated Sm.i,n. If one operator k has a small
S,mi,, then this will result in a "flow-on" to all succeeding operators, resulting in poor
conditioning of all R,,,,, for i > k.
Example 3.
Suppose a criterion other than persistence of excitation is used to select Hi(z), e.g.
mean square output error of the model. We raise the question of whether it is possible
to lose persistence of excitation while adapting the operator parameters. This issue
does not appear to have been considered directly in the literature.

Our interest is in introducing a broad set of principles which can govern the use of alter-
native discrete-time operators. The preceeding discussion indicates broad conditions
which need to be placed on the design of operators.
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lifhas: been obevdthat poor learn ing imay occur when using an on-line estimation
a:=oithmn to model ARMAX (autoregressive moving average exogenous input) systems
114] vihen the zeros of the input transfer function approach the unit circle. Friedlander
pre-,csd an inmprovement to the recursive maximum likelihood learning algorithm
osee.whr a prefictrvwas used to pull the roots towards the center of the unit circle
using ,al approachs which relcsthe usual polynomial A(z) = F aptt' byA

a. ( ,~whee cis a rolling factor. As c decreases, the roots of A(z) move
rediall ':nv/ars towards the origin 4 [114]. 'We propose that Fri edlander's method could
also be applied to Lhe operator models by introducing either

Q)a -rcgul'rnizqstanop term into the update equations for the operator parameters, or
(H), bounds oni the rositions that roots.
hiP tlris case, w.,e prlopose an alternative nolIc-zero operator,

2 + ýCP -(14)

w,;h ere aF- zp , Z ps and pz, pp are pulling factors which wve seek to minimize.
Thuss. a cost criterion mov be defined as

J(t) -7 KE e tj + 7,P+ q (15)

flsý'lmO11 oa f pa, p, will also be required during operator pararneterization. Perfor-
ME:cce of' this approbch is currently being explored.
n nehxt, section, we nresenat numerical exarnples inidicating the difficulties eneoun-

je7_,fi7 ters7 of the ill-c-onditioned- nature of the covale-,nce matrices R,,,,.

St AUCPIAEXAMPLES

A s a7' Th~ic'tiern a the variation in conditioning that can occur in the covariance mo-
toe, e show,- the va-tiation oy(?, 0 )ag~ainst variations in the operator parameters

>c1). Far the, purposes of this experiment, we assumed an FIR input stage, with
1'ý 3, arTC use results obtained over lCQO sample points.
araple presentedý indicate the largeý variations in conditioning possible within

o- one.ratlor structure. Further, it is evident that sometimes quite small changes in the
~tar, parameters result in large changes in the condition number of the covariance

Mal:' -a_ of interest to note that the, pale-zero model allows much smaller eigenvalue
spca for, some noaraineter regions than any of the other operators. By comparison, a

sif oerto obta~ined an eigeovalue spread of 1136 for the same experiment.
Caculestions which we have identified are:

Hm-7c t se'lect operators which result in the smallest possible eigenvalue spread ?
Ca e choose LI(s) such that any learning algorithm will always seek' to obtain a

tT- n- asnsfonnmatian which se~eks to minimize the covariance matrix eigenvaliue
ST-2a ? Further, is it possible to always choose an operator structure such that the
ý' ryNnvalhue spread is small1? In othervwards, is it possible to guamrantee that such models

'ox I 'always exist ? Further w/ork is recuire~d in this are-a, to understanding these issues
in the contexýt of neural networks.

4 >ý02 ihas, this is in itself, a speccial case of an alternative operator.
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Figure 1: Condition number for data covariance matrix /ouo versus varying operator
pole parameter: (a) Gamma Operator (vary co), (b) Gamma(2) Operator (c, = 0.8,vary
co), (c) Gamma(2) Operator (vary co linearly, vary c1 to maintain constant pole radius
r = 0.9), (d) Pole-Zero Operator (rp = 0.5, wp = 0.37r, r, = 1.0, vary J).

6 CONCLUSIONS

Recently, novel input structures have been proposed to replace the usual time delay
(shift) operator commonly used to map time-varying signals to neural network archi-
tectures. Various advantages have been demonstrated for operators such as the Gamma
operator [12] and the delta operator [21].
We have proposed a general second order pole-zero operator structure allowing complex
poles and zeros to be independently adjusted. Various aspects of the operators have
been considered, including an initial analysis of persistence of excitation conditions
applicable to the (linear) input preprocessing stage to a neural network model. Results
have been presented which indicate that the choice of the operator structure is vital if
proper convergence is to be obtained in the linear dynamic sections of the model. Some
advantages of the pole-zero have been indicated.
In future work we propose that it would be of some interest to closely examine how
the operator parameters can be adjusted while maintaining well conditioned covariance
matrices. This would enable us to exploit the variable parameters in the operators, but
with some possible trade-off. It would also be particularly interesting to consider this
development in light of the type of error surface analysis performed by Principe et. al.
[26].
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Abstract

We consider the problem of how to incorporate prior knowl-
edge in supervised learning techniques. We set the problem
in the framework of regularization theory, and consider the
case in which we know that the approximated function has ra-
dial symmetry. The problem can be solved in two alternative
ways: 1) use the invariance as a constraint in the regulariza-
tion theory framework to derive a rotation invariant version
of Radial Basis Functions; 2) use the radial symmetry to cre-
ate new, "virtual" examples from a given data set. We show
that these two apparently different methods of learning from
"hints" (Abu-Mostafa, 1993) lead to exactly the same analyt-
ical solution.

1 Introduction

Lack of examples is very often responsible for poor performances of learning
algorithms. In many cases it is difficult, if not impossible, to collect additional
data, leaving us with unsatisfactory solutions. However, it is often the case
that not only the examples but also some prior knowledge on the learning
target are available. Examples of prior knowledge are smoothness, invariance
with respect to transformation groups (such as rotations or reflections) or
information about time and/or space scale. Most of the existing learning
schemes do not make use of prior knowledge, and therefore provide subopti-
mal solutions that do not fully exploit the amount of information available.

One major contribution to this topic has been given by Abu-Mostafa
(1993) who developed a methodology for integrating different kinds of "hints"
(prior knowledge) into the usual learning-from-example procedure, and re-
lated them to the well-known concept of VC-dimension (Vapnik, 1982). Abu-
Mostafa considers, among other things, the case in which the function that
has to be learned is invariant with respect to certain transformations. In this
case he argues that the "hints" can be represented by new examples, gener-
ated from the existing data set by applying transformations that are known

0-7803-2739-X/95 $4.00 © 1995 IEEE
201



1o leave the function to be learned invariant. This approach can be applied
independentlv of the learning technique that is used: the learning technique
remains the same. and the data set is augmented with new, "virtual" exam-
pies.

\n alternative approach consists in leavitig the data set unaltered, but to
use the prior knowledge to modify an existing technique to ensure that the
approxiienated function has the desired invariance properties. This approach
is clear!v related to the creation of virtual examples, butt it is not obvious
that provides the same result.

In the following we apply this alternative technique to the case in which
ode prior knowledge consists in knowing that a function is radially symmetric.

The approximation technique wc consider is Radial Basis Functions, because
it can be derived as the solution of a fttnctional minimization problem, ill
which prior knowledge about the smoothness of the function is already used.
The presence of a functional to be minimized makes easy to introduce the
additional prior knowltedge as a constraint over the domain of' the functional,
aId will let us derive ain analytical solution, that is as simple as in the Radial
Basis Functions case.

Interestingly enough, the solution derived in this way is exactly the same
that is obtained if the prior knowledge is used to create virtual examples,
shovwing that the creation of virtual examples is the "right" thing to do, and
providing another step in a rigorous mathematical analysis of the technique
of virtual examples. Before describing these results we first briefly review the
regularization theory approach to function approximation.

2 Regularization Theory and RBF

Suppose that the set D = {(xi, y-) G R' x RI-Y__ is a random, noisy sample
of some multivariate function h. The problem of recovering the function
h from the data D is ill-posed, and can be formulated in the framework
of regularization theory (Tikhonov, 1963; Wahba, 1990: Poggio and Girosi,
1990). In this framework the solutinti is found by minimizing a functional of
the form:

INO

Hy]) = (f(Xi) _ p,)2 +AoCl. 1

where A is a positive number that is usually called the reglrarizalion parate-
ler and o[f] is a cost functional that constrains the space of possible solutions
according to some form of prior knowledge. The most common form of prior
knowledge is sm oohtiess, that, in words, ensures that if two inputs are close
the two corresponding output are also close. We consider here a very general
class of rotation invariant smoothness functionals (Girosi, Jones and Poggio,
1995). defined as
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OVI] ] dsWS

R, d If(s)
where- indicates the Fourier transform, 0 is some positive radial function
that tends to zero as lisIl --* o (so that _'_ is an high-pass filter). We consider

here for simplicity of subsequent notations the case in which G (the Fourier
transform of C) is positive definite, rather than conditionally positive definite
(Micchelli, 1986), and therefore is a bell-shaped function. It is possible to
show (see the paper by Girosi, Jones and Poggio, 1995, for a for a sketch of
the proof) that the function that minimizes the functional (1) is a classical
Radial Basis Functions approximation scheme (Micchelli, 1986; Moody and
Darken, 1989):

N

f(x) ZciG(x - xi) (2)

where the vector of coefficients (c)i ci satisfies the following linear system:

(G + AI)c = y (3)

where I is the identity matrix, and we have defined the vector of output
values (y)i = yi and the matrix (G)ij C(xi - xj). Classical examples of
basis functions G include the Gaussian (G(x) = exp(-IIx 1

2)) and the inverse
multiquadric (G(x) = (1 + lIxH 2)-). In the next section we will show how
to embed the prior knowledge about radial symmetry in this framework and
we will derive the corresponding solution.

3 Regularization Theory in Presence of Ra-
dial Symmetry

In the standard regularization theory approach, the minimization of the func-
tional H[f] is usually done on the space of functions (D for which 0[f] is finite.
If additional knowledge on the solution is known, that can be used to fur-
therly constrain the space of solutions. If we known that the solution is a
function with radial symmetry, then we can restrict ourselves to minimize
H[f] over 1fNT7, where )Z is the set of radial functions. The problem we
have to solve now is therefore the following:

N

min H[f] = min Z(f(x,) - y,) 2 + AO[f] . (4)
fE4,n 1z fE4Dn*7 i=1

We now notice that any functions in 7R uniquely defines a one dimensional
function f* as follows
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circlc ofradius IxI,

H

oo

Figure 1: The basis function H(Hjxlj, Ilxill), for xi (2, 0).

is presented in figure (1), where we have set I1xill = 2. It is clear that this
function is a radial "bump" function, whose bump is concentrated on a cir-
cle of radius lIxill. Any radial section of this function looks like a Gaussian
function centered at 1x!lj, providing a local, radially symmetric, form of ap-
proximation.

4 Radial Symmetry and "Virtual" Examples

In this section we follow more closely the approach originally suggested by
Abu-Mostafa, and use the prior knowledge to generate new, "virtual" exam-
ples, from the existing data set.

Let D = {(xi,yi) C led x R}I= 1 be our data set, and let us assume
that we know that the function h underlying the data has radial symmetry.
This means that f(x) = f(R•x) for all the possible rotation matrices R0
in d dimensions. Here 0 is a d - 1 dimensional vector of parameters that
represents a point of id-1, the surface of the d-dimensional unit sphere. This
property implies that if (xi, yi) is an example of h, the points (R/ox, yi), for
all 0 E Ed-1, are also examples of h, and we call these additional points the
"virtual" examples.

Let us now consider a standard Radial Basis Functions approximation
technique, of the form (2). Suppose for the moment that the function is
invariant with respect to a finite number of rotations Ro!, . . . ,Ro. . Each
example xi will therefore generate a virtual examples Rolxi, ... HP, xi, that
can now be included in the expansion (2) together with the regular examples.
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Ri 'Is tvial to see th at, because of' the, itvari anece pro perty of/hI,Iie coefficients
of I i basis functions corresponding, to the viii Hal examples will he equal to
thie. cofhcients of the corresponding, oril gixal example. As a result, we have
th at eq. (2~) has to Ve replaced Ly

1(x ~ci G(x - Rsxj)
i=1z~ CA Uz

whe re xv.- havei defined 00 0, so tlat, R&,x = x. We now re lax- the as-
>tin-iiiion that the function is invariant with respecet to only a Finlite number
oretl o> aiid allow 0, to spanli the entire surface iThe equat ion above

it,_~et o repil-ace eq. (2) xviIti L followii ug1:I

J,( X) jc dQ (09) ((x -Rox,) (0

c/U z i 0 is the uniforin measure ovcer 'ý -l Using~ the Ilankcl repre-
sentation (6) for tIe radial fuinction G in eq. (10), the iiitegral over Sý'di cali

he prforn-iedc. and provides the result:

A'I

vhltre H ( xj 1--1) is gven lirecis(t lvle expression (8)! Froni this derivation
It is cleer that the basis function II (jx, x 1 xil) is aii iiifinite supierposit ion of
Gac~ussian, funictioiis, xwhose centers uiinfornlv cover tie su rface of the spldier
of ra lii-s Ix-1.

Tb v-e--ore creatiniovirtiial exanilples seemis to lie, iii a sense, tHe "ri~lit

thingj co do, leading to the same result. chat oiic g)ets froni the iiiore "prin-
cil cid' and sophi> icated approach of regulariz'ation tlieory. The appealing
feai--e of tie virtual exaniples techmnique is tlic fact thai, it can lie appliced 'in

vey cgenrc 1 cases. in which it, iiiiht lie limpossible to de rive anialytical results
as tHie oiii dlerivedl in section 23.

D A2ý Shaapk ExpJ~eymanat

A i atural qumestion to ask is how niuchi iniprovementii can lie expected by

aV ii'eninig Ilie data sei wxithx "virttual' examuiples. 2\ siiiilar question xvoule lie
tasl:. a> cou sidered hi- Abu-Mostafa ( 1993), wvhat is the VP' dimieiisioii of the

aporox'' xiiiou technique (7) once the prior knoxwledge is included. The case
co nsider seems to 1)1 already coiiillicated enough. since an infinite numbiler

of v crtiial exampiles cai lie generate d by each example, but, t his is clearly
not ii iiivaleii to liave aii infinite nuimier of examples, because tHie virtual

-D, oles flie oii a sphere aiid are not raiieoiiilv distributed. This is lal
aL difccit prob1lemi, aiid should lie studlied thueoretically aiue exhierienentally.
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We present here just one very simple example of how the technique works
and what kind of results we are looking for.

We consider a 2-dimensional case, in which the function to be approxi-
mated is h(x) = cos(JHxJJ 2 ). We used the standard Gaussian RBF technique,
and the corresponding technique (see eq. 7 and 9) that makes use of the
prior knowledge. An increasing number of examples, from 16 to 225, has
been generated by sampling the function h on a grid in the square [-1, 1]2.
The generalization error of the two techniques, computed on a test set of
400 data points also on a regular grid, has been plotted, in a logarithmic
scale, as a function of the number of examples (figure 2a). Notice how, in
particular for small number of data points, the two techniques differ in gen-
eralization error of orders of magnitude. Notice also that when the number
of data points becomes large the lower curve, the one computed using prior
knowledge, becomes extremely flat: we attribute this to errors encountered in
the numerical evaluation of the Bessel function 10 involved in the computa-
tion, that reaches values of the order of 10150, and would need a more careful
analysis. Although we have not addressed this problem yet, we do not foresee
major complications in doing it, and it should not become a limitation of this
technique.

In order to get a feeling of how much is gained by the use of virtual
examples we computed how many examples are needed for the two techniques
to achieve the same generalization errors. Let E 2(N) and E!(N) be the
generalization errors of the standard Radial Basis Functions technique and
the one with prior knowledge respectively. The equation

E 2(N*) = Ei(N) (11)

implicitly define N* as a function of N: N* is the number of data points that
are needed, with no prior knowledge, to achieve the same accuracy achieved
by N data points with the prior knowledge. Using linear interpolation to
approximate El(N) we evaluated N* as a function of N at a number of
points and reported the result in figure lb. For example, it takes approxi-
mately 45 data point with the prior knowledge to obtain the generalization
error achieved by 225 data points without the prior knowledge. Since 225/45
= 5, we could interpret this result saying that each example generates an
"effective" number of virtual examples equal to 4 (5-1).

6 Remarks

We conclude the paper with few remarks:
* One could wonder how often in practice one has to approximate functions
with radial symmetry. Probably not often, but one of the goals of this pa-
per was to give an analytical treatment of the problem of creating virtual
examples, and set the basis for further results, of more immediate applica-
tion. Although it has been already proved that creating virtual examples
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reduces the VC-dimension of an approximation technique, it is not obvious
that this is strictly equivalent to including the prior knowledge as a constraint
on the class of "admissible" functions, that also reduces the VC-dimension
of the learning scheme. We plan to consider more complicated cases, of
more immediate application. Many real world problems are characterized by
invariance properties (Poggio and Vetter, 1992): faces are (approximately)
mirror symmetric objects, handwritten characters maintain their identities if
their images are rotated, scaled or translated in the iniage plane. Although
these transformations are more coiiplex they all have the property of being
a group, and we plaii to exploit this property in more details.
* We should notice that in the case considered here we nsed the prior knowl-
edge as a "hard constraint", and force the solution to have a specific symmetry
property, hut we could also consider the case in which we only favor solutions
with that property. This can be done in regularization theory by considering,
instead of the minimization problem (4) the following:

AT

iiin Zfxi) - pi)2 + AJ)[f] + ou,0[.fi (12)
i=l

where /l'[f] is a functional that penalizes functions that are not radially syrri-
metric. This case has been considered by N. T. C'han (1995) in the one-
dimensional case, that is in the case in which the function is known to be
even. lie considered the choices:

<[f] dx (.(x) - f(-x))'

N

½L[1 Z f(xi)- J*(-x))i
i=1

The last case is a weaker form of prior knowledge, because the constraint is
enforced only at the data points, but in both cases the solution is of the form:

N N

1(x) = Z ci&(e -x) +LESbGx + ri)
i=1 i=1

and therefore consistent with the creation, for each example (xi, yi), of a
virtual example (-xi, yi).
a Since radial functions are, after all, one-dimensional functions, on( could ask
why not to use eq. 5 to state the problem in one dimension and use standard
regularization theory in one dimension. The reason is that we are ultimately
interested in computing a d-dimensional functional, whose smoothness prop-
erties are very different froni the smoothness properties of the corresponding
one-dlimensional function defined by eq. 5. Moreover, formulating the prob-
lem in) one-diniension would be useless in the case in which we want to enforce
only a "soft" constraint as in the case of the functional of eq. 12.
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c) It sh ould also be noticed that, it, has been possible to derive analytical resuhts
h -cuse ini tbe BRadial Basis Furnctionis t ecb~nique it is clear the role played by
the data points~, sinjce they explicitly appear in the approximating fnnction.
The same kind of analysis is not possible if the approximation technique is

> st Ii atd with Multilav er Perceptrons. or sonie other no imidirar approxima-
tion te~chnique, In which the depeindiinec of the solut ion on the locations of'
the dat a points is muchi m-ore involved and not known analyitically.
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Waltham, MA 02154 Piscataway, NJ 08855

ABSTRACT

A text-dependent speaker verification system based on Neural Tree
Network (NTN) phoneme model and phonetic weighting scoring
method is presented. The system uses a set of concatenated NTNs
trained on phonemes to model a password. In contrast to the con-
ventional stochastic approaches which model the phonemes by Hid-
den Markov Models (HMMs), the new approach utilizes the dis-
criminative training scheme to train a NTN for each phoneme. The
phoneme-based NTN is trained to discriminate the phoneme spo-
ken by the speaker with respect to those spoken by other speakers.
A weighted scoring method depending on the phoneme's ability for
speaker verification is used to improve the performance. The pro-
posed system is evaluated by experiments on the YOHO database.
Performance improvements are obtained over conventional tech-
niques.

1. INTRODUCTION

Recently, the speaker verification systems based on characterizing a speaker's
password as a sequence of concatenating subword units represented by Hidden
Markov Models (HMMs) has been investigated [11, 9]. The subword based
model was shown effective in speaker verification tasks for password of con-
nected digits or a randomly prompted sentence. In the previous study [7], we
have presented a neural-network-based algorithm for text-dependent speaker
verification. In contrast to using HMMs, the algorithm uses a set of concate-
nated Neural Tree Networks (NTNs) trained on subword units to model a
password. The discriminative training is performed in each phoneme model.
Thus each phoneme is modeled for the speaker with respect to other speakers.

* This work was done when the author was with CAIP center Rutgers University.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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The advantage of using subword models are three fold. First, using sub-
'cord models can broaden the application of a speaker verification system by
allowii;_g unrestricted passwords. Second, in a subword based speaker verifi-
cation syste~m, the discriminative training can he performed on each subword
cci:- The differences between rwo speaker can be discriminated only when
h'ur utterances are tine aligned. WVhen the speech waveforms corresponding

To rhe same context are aligned, the different way of pronouncing phonemes
i ,Y E7sp7eal!crs can be differentiated. Thirdý a scoring method using phonetic

- icc can be applied to the subword models. The phonemes -which are
5a!e 2r speaker discrirmnation shouold be emnlphasized, and those which are

'or oon lising should be suppressed.

In this paper, the phonetic weighting scoring method that combines the
cfidence ues comne out of the phoneme-based NTIN is described. The
Pro>n cc wevights are chosen to refelect the the phoneme's effectiveness in
speake•r doscriniccnation. To cvaluare the performance of this algorithm, we
ýoýnducted text-dependent speaker verification experimeints using the YOHO
database Experimental results show that tAle proposed hybrid method can
achieve better pcrfornanoce than that obtained by HIMl classifier.

2. PJDNEMVE-BEASED NEURAL TREE NETWORK

2o10 Neural Tzea Netvroric

The neural tree network (NIPN) [12] is a tree-structured classifier that com-
hines the properties of the feed-forward neural networks [8] and decision trees

[1]. The structure of the N\TN classifier is similar to a decision tree. Deci-
sion tree uses a thrcshold based on one feature dimension in each node to
ocs~uceinate feature vectors. In the NPN, the discrimination at each node is

nupleicnicted by a neuron that can be trained to have the ininhnum classi-

nica-coo error. IR has been applied to speaker verification [3], and shown to
achieVe better perforncance over conventional nmethods, such as Vector Quan-
Lccltiol (VQ), and MIvultilayer Perceptron (PIYLP). In this system. each speaker
Is niotdiJed by a binary NTN which is trained by the feature vectors of that

Sp-a 'er and the all the other speakers. During training, the feature vectors
of the sneaker are labeled '1', and those of the other speakers are labeled '0'.
Th'e NýTN 's recursively trained in the following way. Given a set of training
data at a particular node, the neuron is trained to split the feature vectors
cino t -o subsets that incinhicizes the classification error. These subsets are

slbksequently passed to children of the node. This algorithm recurrently pro-
ceeds n>til the subset contains the feature vectors of the same class, or the

rUc- th to the prespecified level is reached. The leave at the termiinal nodes
ar-- labeletl by the majority class, and the confidence measure of each leaf is
aiso corputed.
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2.2. Scoring Method of NTN Model

The NTN is a non-parametric model of the probability distribution of feature
vectors. It uses a number of tree structured hyperplanes to partition the
feature space into non-overlapping subspaces. In each leaf, a discrete posterior
probability, referred to as confidence, is derived as follows [6]. The probability
of class Ci in a leaf Ij can be approximated by the Parzen density estimate
formula [10]:

1j 1p(xjlCj) = 1- j- (1)

where kij is the number of samples of class Ci in the leaf ij, Vj is the volume
of the region enclosed by leaf ij, which can be canceled out later, and Ni is
the total number of samples of class Ci. The prior probability of a class Ci is
defined as:

) (2)

where M is the total number of class. Given a vector xj in a leaf 1j, the
posterior probability that the vector belongs to class Ci is defined as

Aci xj -- P(ci)p(xj I O (3
pC=1 p(Ci)p(xg I0 C)

Canceling the common terms, the posterior probability can be simplified to

P(C, lxj) = k(4)

The NTN score of an utterance is defined as the average confidence over the
whole utterance.

2.3. Training and Testing of Phoneme-based NTN

The phoneme-based NTN differs from the multiple-word NTN in the sense
that they use a different training data set. Instead of using all the words of
training data to train a large NTN, the new training algorithm only takes
vectors assigned to particular subword units in the training speech to train a
phoneme-based NTN. In training of a multi-word NTN (as that trained for
text-independent task), the clusters of feature vectors corresponding to the
phonemes overlap with each other severely. In NTN training, the classification
errors in higher layer may interfere the training result of lower layer. However,
the overlaps of the phoneme clusters which are difficult to be separated in
feature domain can be separated more easily in time domain. In our previous
study, it is shown that training the NTN with homogeneous speech data
instead of using all the data improves the verification performance [7].

To train the phoneme-based NTNs for a speaker, a speaker-independent
phoneme-based HMMs are first trained to perform speech segmentation. The
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parameters of a set of HMdMs a-re intially given by the bootstrap models,
then re-estinated by the training utterances in the YOHO database using
the Baunt-feich algorithm. For each training utterance, a composite model
s syvnthesized by concatenating phoneme models given by the transcription.

L the re-est-imation, all the utterances are segmented into subwords and
labeled by a Viterbi decoding technique based on the composite models. A
speaker-specific phoneme-based NTN is trained for each phoneme using the
subvord tokens labeled as this phoneme. The NTN trained for this phoneme
can pe:ovide the ability to discriminate between the speaker and impostors.

Duringr testing, tbhe utterances are first segmented by the concatenation
op i.I-e se bword models given by the prompted password. The subword units
--c thern Applied to the coreesponding uhoneme-based NTNs. The scores

0 r. caculated by equation (4), ;hich is described on above. The speaker
-er-ifieron systems using uhonerne modei havn the advantage that the testing

passwords are not restricted to fixed passwords. Hence, the security of the
J sen enIhanuce.

THr con-,en ionI! scoring methods of speaker verification, the final score is com-

p 6ed by averaging the score of feature frames over the whole utterance. It is
assmied Jthat the feat ire vectors of all the phonemnes contain equal abilities

o- (''scr natLnia speakcers so a score averaged over the whole utterance is

rsCd Lo re-nresent thie sneaker's characteristics. However, the effectiveness of
a no- against the other speakers by each phoneme might be differ-

enL.. Sance the vocal tract adopts widely different articulatory configurations
'2 ng te production of vowels, fricatives, plosives and nasals, thee average

-e1tre does not represent speaker's characteristics accurately [13]. In Savic's
a text-independent speaker verification system based on adaptive vocal
m odel -ys proposed. The speech was separately classified into speech

e tit.. repres ieting each broad phonetic category as belonging to the im-
o orso aas belonging to the true speaker. A conclusion was drawn that

"--ett-r performniance can be achieved by representing each phonetic category
D- F dir-'n,ýt model, and by making the final verification decision based on a
..-e e eontbinat.on of of scores for individual categories.

T o a enouer stu dy [14< a t ett-independern speaker erification systene

_ -a classifiers is described. The first stage consists of a speaker-
ot e etector trained to recognize a phonem nthat is mos t

-I-e orspeaer veri'ication. Th± classifier in the second stage is trained
rcogne t!le frames of speech from t-he target speaker that are admitted

S--CD' i tIne dector. Thue vowne_ /i/ is fouind to be the most effective
IL Ch•iara'eteain' sneakers, Turn -ovement was reported in a speaker

nif eoz erperiment -hat only consitiers thee phonenme /i/ in the utterances.

aporoa ch thypt applies phonetic we gb ng in calculating the sub-
s'-core is eDrOpose 6

,. As illust-rated in Figuere 1• th- score come out of
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Testing utterance .one"
Transcriptions ! w !,, n

segmentation by speaker-independent phoneme HMMs

phoneme 1 phoneme N

phoneme-based NTN phoneme-based NTN phoneme-based NTN/w/ /^ I/]

Score Weighted combination of score from frames

Sccore

Figure 1: Combining the frame scores with a set of phonetic weighting pa-
rameters.

Interspeaker

Prob. density intraspeaker
pdf

.............................................................

0.0 Threshold 1.0 NTN score

Figure 2: Probability density functions of intra- and inter-speaker NTN score
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Rank Phoneme Example Word F-ratio
1 eh seven 7.65
2 er thirty 7.02
3 ay five 6.98

4 ao four 5.83
5 uw two 5.25
6 ah cup 4.96
7 ih fifty 4.53

8 ax seven 4.12
9 ey eight 3.72
10 n one 3.42
11 r four 3.27
12 iy three 3.15

13 w one 2.84
14 v five 2.02
15 dx forty 1.86

16 s seven 1.78
17 k key 1.36
18 f five 0.66
19 th three 0.65
20 t two 0.35

Table 1: Average F-ratios of 20 phonemes over 30 male speakers

each subword NTN is multiplied by a phonetic weight which the speech frame
corresponds to. The phonetic weights are chosen to reflect the phoneme's
effectiveness in discriminating speakers, which depends on the its ability to
make correct decision in speaker verification. The classification performances
are directly related to the distribution of intra- and inter-speaker scores mea-
sured by the phoneme-based NTNs. The more likely a phoneme-based NTN
makes classification errors the less discriminative it is. In other words, a
phoneme is more effective in discriminating speakers if the phonemes spo-

ken by other speakers are distributed at widely different locations from the
speaker's phonemes in the feature space. For example, in two Gaussian dis-
tributed pdfs, as shown in Figure 2, the error classification probability is de-
termineid by the amount of overlap in the pdf of interspeaker and intraspeaker
distance.

The results of the previously stated studies show that the vowels are gen-
erally more useful for speaker verification than plosives, because the classifi-
cation error rate caused by plosives is larger than that caused by vowels. One
of the more effective measurement is the ratio of interspeaker to intraspeaker
variances, often referred to as F-ratio [15]. More specifically, the F-ratio of
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the NTN score for speaker i is defined as [4]

F. = (tii -- I'ij,zij)2  (5)a? + a?.

where uii and oii are the mean and standard deviation of the intraspeaker
scores, and the pij,i6j and o-ij,ij;j are those of interspeaker scores, respectively.
The F-ratio is used to measure the difference of two means normalized by the
averaged variance, which also reflects the ability to discriminate speakers of
NTN scores. In order to measure the discriminative ability of a phoneme,
the frame scores corresponding to this phoneme are used to compute the F-
ratio. Table 1 shows the average F-ratio of 20 phonemes over 30 speakers.
In general, the vowels are considered having more discriminative ability than
the plosives.

It is a common experience that some speakers are easier to be recognized
because their pronunciation of certain phonemes are particularly different
from others. The weighting vectors are determined so as to emphasize the
phonemes which are reliable for speaker verification. As we have discussed,
the vowels are demonstrated to be the most speaker discriminative phonemes,
and the plosives are the least. Therefore, the feature frames segmented into
vowels are weighted with higher values, and the plosives are weighted with
lower values.

In the research of speaker recognition, using a weighted cepstral dis-
tance measure has been proven effective in improving recognition performance.
Most speaker and speech recognition systems use weights in the feature do-
main [5]. This new approach applies the weighting in phoneme level, which
emphasizes theose phones that are effective in speaker discrimination.

Generally, two weighting schemes can be used in speaker recognition sys-
tems, which are speaker-dependent and speaker-independent weighting schemes.
The speaker-independent weighting scheme is used to determine a general set
of weights that applies to all of the speakers. The speaker-dependent weighting
scheme is to adapt the weights from speaker to speaker. In speaker identi-
fication, the speaker of the testing utterance is unknown to the system, so
it usually uses speaker-independent phonetic weighting. However, in speaker
verification, a claim to be a particular speaker was given in advance, so a
speaker-dependent weighting can be used.

4. EXPERIMENTAL RESULTS

The phoneme-based NTN approach and phonetic weighting scoring method
were evaluated by using the YOHO database [2]. The YOHO voice verifi-
cation corpus was designed particularly for testing text-dependent speaker
verification or identification systems. It consists of 138 speakers enrolled (106
males, and 32 females); for each speaker, there are 4 enrollment sessions of 24
utterances each, and 10 verification sessions of 4 utterances each. The testing
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Sn:J-ects sTanaced a wide range of ages, job descriptions, and edu cational back-
gromunds. Thlc speech is acquired by a high quality telephone handset but n ot

1-oucglZ_ a Leleohone channel in a real-world office environment. The syntax
iu i f t OHO database incorporates "combination lock" phrases, and

t!AC jphrases used -for enrollment and verification are different. The utterances
m YOKO 0r samnied at a rate of 8 kHz, and limited to a 3.8 kiHz bandwidth.

_0! 'lscmvn Using Rnoccarne-oasen] I>I-i7 ihluodals

Y I signaI is pre-cmphasized using a. first order digital filmer with pre-
en-_)itasis factor 007. The feature vectors are 12th order 'IFCCs extracoed
f secedI_ signal ovr a 25-ms wvindow every 10 mns throughout the utterance.

n ... T' hý__ HD/iT/hI and speeclh segmentation, the A IIFCC, A 2 B/IFCOC
eenerg ad a energy are argumented to each feature vector to

io--n• a K° dlorncesiocnal vector. in training the phonerne-based TIN, and
t only th 12t.h order M/IFCCs are used. The PLU is modeled by a 3-

1eftre >LLht LTLtl /i no srip between states. A total of 20 phonemes.
_S sho 1n I ' found enIogh to t -ranserihe the spoken numbers in

A0f• L --,

oevalu-e tic pe formance o0 te systemi working in the real world,
So -e• ,-a 1- erfation experiments should he conducted. In the

,---.e-, 7 3is. onl.yO sapnakers are enrolled in the system and phoneuw-based
..... arra'cnd for these speaker. Tihe other 58 speakers are cousiderej

as -_hich -e never seen in the trai•ing. Forty-eight utterances
12 .se m. each speaker and those of other speakers are used to train

s 1 krspcii phoennem NTls.

I-_c .se tng, each speaker is treated in turn as a clahnant. For each
- --. tt... -,ances spoken by speakers of the saonu ,ender other tican the
-- am curt o± claniant'so cohorts are selected as impostors. In other words,

t e cmoro se, of each speaker are excluded as impostors, and
i S no tesiliug h~Lwco speakers ofdifferent gender. This arrangement is

.aoxd an opt-._nstic hiss, and mnake the error estimation closer to what
_-e 1 -boun o - the real world. The miodels are trained to inhibit thie cohort

S -,"er. i cohort se- speakers are not excluded as impostors, they are
LO;e to h c,' ejctecd.

c lassifir i Equal Error Rate
I4 nttrs.(10s) 1 uttr42.5s)

ph mocoI NTN ! 0.62% 1.21%
! T iI_ 4 , 1.75% 2.01%

j
2 lJ 2: Spce io•n performance on YOH0 database (80 speakers,
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The utterances in the same session are used individually or connected
together for testing. The average length of each utterance is about 2.5 sec,
and the total length of all utterances in a session is about 10 sec. The scores are
cohort normalized with a set of the 5 closest cohort speakers, then compared
with a global threshold. A decision of acceptance or rejection is made after
comparing the cohort normalized score with a global threshold. The results in
Table 2 show that the phoneme-based NTN performs better than the HMM
both in single and concatenated utterances.

4.2. Experiments of Phonetic Weighting Scoring Method

Several experiments are performed to investigate the significance of speaker
discrimination of the subword NTN trained for each phoneme. With enough
data for training the phonetic models, the YOHO database can provide sta-
tistically significant estimation of the phonetic discrimination ability. The
subword NTN are trained as in the last experiments.

Two experiments were conducted to evaluate the effectiveness of using
phonetic weighting. Thirty male speakers in YOHO database were enrolled
in the system. The subword NTN were trained by the same procedure as
above. In testing against a speaker, all the other enrolled speakers are con-
sidered as impostors. The average length of each testing utterance is about
10 second. The NTN scores corresponding to each phoneme are multiplied by
the phonetic weights. The confidence measure of a utterance is given by the
weighted combination of these NTN scores. The results in Table 3 shows that
the phonetic weighting method improve the speaker verification performance.

classifier Equal Error Rate
without weighting 0.18%

Spkr-Dept. weighting 0.15%
Spkr-Indept. weighting 0.13%

Table 3: Speaker verification Performance on YOHO Database (30 speakers)

5. SUMMARY

We have proposed a phonetic weighting scoring method used to compute the
scores for the phoneme-based NTN classifiers. The new approach has been
evaluated by the te2 iependent speaker verification experiments. Since the
phoneme-based NTN classifier is trained with the discriminant error measure
for each speaker, it is shown to provide better discriminant ability than the
HMM classifier. The phonetic weighting scoring method is also shown ef-
fective for combineing the scors come out of phoneme-based NTN classifiers.
Performance improvements are obtained over conventional scoring methods.
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Abstract. The hybrid Hidden Markov Model (HMM) / Neural
Network (NN) speech recognition system at the International Com-
puter Science Institute (ICSI) uses a single hidden layer Multi
Layer Perceptron (MLP) to compute emission probabilities of HMM
states. This phoneme-based recognition approach was developed
for large vocabulary size continuous speech recognition. In this pa-
per, however, such a recognition scheme is applied directly to much
smaller vocabulary size corpora, such as the Spoken Language Un-
derstanding Numbers'93 database and the TI connected digits. We
report here on the development of small baseline systems to facil-
itate all future research experiments, and also on the use of these
systems for experiments in context-dependent hybrid HMM-MLP
systems.

1 Introduction

In earlier work from a number of speech laboratories (including our own)[1, 4,
8, 9], the Multi Layer Perceptron (MLP) has been used to estimate emission
probabilities for Hidden Markov Models (HMMs). The HMMs are used as the
underlying statistical model of speech for large vocabulary speech recognition
systems. Over the years, these networks have scaled up to 4000 hidden units
and over a million free parameters, trained on millions of feature vectors
calculated from speech roughly 100 times per second. As we and others have
expanded these systems, we have been pleasantly surprised to learn that the
rich and redundant training sets have permitted us to train the nets with
very few training passes; in fact, when our largest network was initialized
with weights to do phonetic classification from an earlier, smaller data set, we
sometimes only needed a single pass through the new data. Even without this
initialization, we only required a few passes through the data for these larger
problems, using a simple online form of back-propagation with a reiative
entropy error criterion.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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iovever, despite this result, we have found that training for large corpora is
still too time-consuming to promote extensive experimentation with feature
extraction and other issues ,n acoustic modeling Even using fast specialized
hardware for this purpose, we often find that the data handling issues alone

lead to unavoidable delays in training that frequently add up to a week or
niore. Therefore, we decided that we needed to work with a task that was
mnruch smaller, but was difficult and representative enough of larger tasks that
we could generalize lessons learned from the smaller problems. This approach
also would require discipline, in that we would want to eschew particularly
specialized solutions to the smaller probiem that would not scale.

After some pilot studies with a database of isolated digits spoken over the
telephone (and originally collected by Belicore), we decided to use the "Num-
bers" task that, was being developed at the Oregon Graduate Institute by
researchers at the Center for Spoken Language Understanding (CSLET). It
is a database of natural numbers spoken continuously and naturally over
the telephone, and is reasonably difficult. Due to the moderate size of the
Numbers'93 task, we were able to perform a wide range of experiments with
context-dependent networks, resulting in good improvements for this task
ore: our standard context-independenc system. Some experimemns of this

mpe were performed previously at ICSI, but few variants were explored due
to computational costs for the larger tasks. In addition, in order to com-
pare our small vocabulary size recognition system performance with that of
other speech research sites [2, 8], a recognizer was developed on the TI con-
nected digits using the context-independent form of the hybrid HMM-MLP
approach.

Since vwe wished to use the techniques that we developed for large vocabulary
recognition for these tasks, interesting questions of downward scaling arose.

Perhaps the huge singie-hidden-]ayer MLP structures were only the province

of excre-nely large data sets, and smaller problems might not work well with-
ouc specialized structures designed with knowledge of the problem. Some of
the design choices made over the years for large vocabulary recognition tasks

(suck as Resource Management and Wall Street Journal) include:

o Cross-validation testv with 0.5o improvement threshold

.o <owering of learning rale (initially set to .008) by a factor of 2 when
this toreshold was not exceeded

o Stopping of trainiog when tdis threshold was not exceeded for a pass
.o . a reduclorl n learnin ra e

.o W'eIg ts ;nitiaized from a. network trained on TIMIT or NTIMWT

o s F a s e ar sigmoidal hdden layer
o cs0 of at: mou window of (typically) 9 frames
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"* Softmax (exponential of the unit's weighted sum normalized by the sum
of exponentials for the entire layer) used as the output nonlinearity

"* Stochastic gradient descent using a relative entropy error criterion

In this paper we discuss results and methods for connected digits and num-
bers, keeping the basic design decisions unchanged. We will show that rea-
sonable systems could be developed without any major design choices, largely
by scaling down the hidden layer size in the obvious manner.

2 Baseline System

The hybrid HMM-MLP speech recognition system we are using has the same
basic structure as described in [1]. A single hidden layer MLP is employed to
estimate the posterior phonetic class probabilities, which are then converted,
using Bayes' rule, to likelihoods for Viterbi alignment in the HMM framework.

The MLP and its training procedure were as described above. The 9-frame
input to the network yields an input layer of 153 units, where each frame
consists of 8 RASTA-PLP cepstra, 8 delta cepstra, and i delta energy features.
All input features for the network are normalized to have zero mean and
unit variance. These choices of inputs, network, and training regimen were
unchanged from our larger tasks (though we do use more cepstral parameters
for very large vocabulary read speech with wider bandwidth). For all tasks,
the MLP was scaled down from our usual range of 500-4000 hidden units to
200 hidden units. For context-independent recognition, the output layer has
61 units, corresponding to one unit per phonetic class. This is also what we
use for the larger problems, although in the case of digits and numbers many
of the phonetic classes will never be found in the training or test sets.

We are currently using a decoder called YO [9] that applies the standard
synchronous Viterbi algorithm. In our lexicon, single pronunciation word
models with repeated states enforcing minimum phonetic durations are used,
and they are based on the most likely TIMIT pronunciations. A null grammar
is used for the digit recognizers. For the Numbers'93 task, our language model
for the pilot experiments is a class bigram derived from the statistics of the
training set.

3 Training Procedure

In our experiments, we use Log-RASTA-PLP [5] as our acoustic pre-processor.
Each frame of the feature vector represents 25 msec of speech, with 12.5 msec
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overlap of consecutive frames. Log-RASTA-PLP was chosen for its robustness
to linear spectral distortions in speech signals that are often introduced by

communication channels. This is important in particular for the Numbers'93
database because it is a very realistic set of data that was collected over the

public-switched telephone network. However, we use some form of RASTA for

all of our tasks currently, large or small (except for some cases with artificial
read speech recorded oxer a standard microphone).

The training of the recognition system is bootstrapped from NTIMIT (Net-
work TIMIT), a database collected by transmitting the TIMIT database

speech signals over the telephone network. Even though the Numbers'93
corpus is phonetically hand transcribed, from past experiences we found that
it is useful to pre-train a neural network from a much larger data set and use

it to initiate our task dependent training. The Numbers'93 corpus has about
100,000 frames of training data, while ten times that number are available

from NTIMIT.

The first step in the training procedure is to perform a feedforward pass of

the data through a pre-trained NTIMIT net, followed by a phonetic time-

alignment of the new corpus using the Y0 Viterbi decoder. This process
estimates a set of preliminary target label for the training data. A new
MLP is then trained on this set of preliminary alignments. Using this MLP,

we reestimate a new set of target labels and so forth. For the training to
converge, three or four iterations of forced Viterbi alignment are found to be

sufficient. Within each iteration, an independent cross-validation set is used
to control the learning rate and to decide when to stop the training. As noted

previously, the details of the training heuristics are essentially unchanged from

the parameter settings that we used for training up systems with vocabularies
of 1000 to 20,000 words, with networks that had over a million parameters.

4 The Numbers'93 Context=dependent Exper-
iment

4.1 Database

As noted earlier, the Numbers'93 corpus is a continuous-speech database
collected by the CSLU at Oregon Graduate Institute. It consists of numbers
spoken spontaneously over telephone lines on the public-switched network.

These numbers are extracted from the addresses spoken by the callers of

CSLU's Spelled and Spoken Names Corpus (3]. The Numbers'93 database
consists of 2167 speech files of spoken numbers produced by 1132 callers.

We used 1534 of these utterances for training and development, saving the
remaining utterances for final testing purposes. There are 36 words in the
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vocabulary: zero, oh, 1, 2, 3,...,20, 30, 40, 50,...,100, 1000, a, and, dash,
hyphen, and double. CSLU has announced that this task, including a much
larger collection of spontaneously spoken numbers, will be made publically
available.

4.2 Context-Dependent Experiments

For the Numbers'93 database, other than developing a baseline context-
independent system, we also experimented with three context-dependent ap-
proaches: single state generalized triphone models, single-state triphone mod-
els, and multiple state phonetic models with generalized biphones. All three
approaches are bootstrapped from a similar baseline system as described in
Section 2, except that the generalized triphone and the triphone methods
require an MLP with a larger output layer of 90 and 111 units respectively,
while the multiple state phonetic model approach utilizes a different con-
nectionist architecture similar to the one described in [4]. The multiple state
phonetic model approach expands the single phonetic state model into a three
state model-a context-independent middle state, a generalized left-biphone
dependent first state, and a generalized right-biphone dependent last state.
To support this formulation a connectionist probability estimator consisting
of 17 MLPs is used, with 8 nets corresponding to each of the 8 generalized
left-biphones, 8 nets for the generalized right-biphones, and 1 net for the
context-independent states.

The context-independent MLP is trained as described in Section 3. The
major problem encountered with training context-dependent systems is the
lack of data for training highly specific phonetic context classes. One solu-
tion, adapted from [4], is to initialize the context specific MLP training with
weights from a more general context net. Thus, our generalized triphone
context-dependent network is trained by bootstrapping from the previously
trained context-independent MLP. The left and right broad categories of our
generalized triphones are clustered according to the place of articulation in
the vocal tract. As noted in [4], since the training is initialized from a context-
dependent net, it is important to smooth the context-dependent priors when
converting the context-dependent posterior probabilities to likelihoods. Simi-
larly, our context-dependent triphone net and the set of multiple state model
MLPs are trained by bootstrapping from the generalized triphone context-
dependent MLP. To limit the number of free parameters and training time for
the context-dependent nets, only the hidden-to-output weights were trained.
No degradation in recognition performance was found in comparison with
training all the weights, as determined by a pilot experiment that was done
on the generalized triphone context-dependent training.
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half of the deletion error rate. We chose not to repair this with a word-
specific phone model for oh since this solution would not generalize well
to the large vocabulary case.

" A class bigram might be over-smoothing the word pair transition prob-
abilities because the corpus was obtained from street addresses and zip
codes. To test this, a new language model was obtained by merging
the class bigram with a bigram by averaging their corresponding word
pair transition probabilities. This improves the context-independent
(200HU) word level recognition error rate from 8.2% to 7.5%, and the
generalized triphone with cross-word context-dependence model from
6.2% to 5.8%. All subsequent experiments on the Numbers'93 task are
performed using this merged language model.

" Our hybrid recognition method seems to scale easily over a wide range
of task sizes, and still achieves good recognition performances.

However, all of these conclusions needed to be confirmed on a final test set for
which no design decisions or recognition parameter settings (e.g., language
scaling) would be altered.

4.4 Results on Final Test Set

Table 2: Word recognition error in % on the Numbers'93 final test set for the
context-dependent experiments. This set of results were obtained using the
same parameter settings as the development set.

Sub Del Ins W.Er S.Er # Params
Context-Independent (200HU) 7.2 2.3 2.0 11.5 28.6 38.8K
Context-Independent (400HU) 7.6 2.6 1.4 11.6 27.9 77.6K
Generalized-triphone Context 5.7 2.3 1.3 9.2 23.4 48.6K
Gen-triphone w/ Xword-Context 4.6 1.9 1.7 8.1 22.4 72.0K

For the Numbers'93 test set, increasing the size of the context-independent
MLP estimator to include context-dependent units yields an error rate re-
duction of 30%. This is at the cost of an 86% increase on parameter size.
On this test set, the improvement appears to be associated with incorpo-
rating contextual information since increasing the number of parameters by
merely using a larger hidden layer did not improve performance. The final
test set provided by CSLU contains 633 sentences, but 249 of these were elim-
inated from the final testing because they contain ordinal numbers, which did
not appear in the training nor the development sets. We feel that a much
larger test set may be required in order to have a more precise evaluation
of the various systems. Nevertheless, the results from both the development
and the test sets indicates that incorporating context-dependence improves
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recognition performance signJf[cantiy• •t is likely that these approaches will
o ........ •e•. to our larger tas!,:s.

•cd; U,_e Bellcore isolated Digits anci %]he ..Xumbers93 database have been
used by other speech research laboratories: but, the res•its have not been
,,vide!)• published. In the meantJnle, we tested our recognizer on the standard
Ti.i3<!ST Connected-Digits Recognition Task ("TI-Digits•;) [6]. While this

conDus is inherently less realist.it since it was recorded in an artificial studio
sil-uatio, n --:•h

•,,,•L_• wide bandwidth, it has been used by many wel! developed
,-_:.,s•.en•(•.•., [2, 8]), so that it wi!! be a calibration point for our methods
on small vocabulary size tasks. Ever since this corpus was made available
b_ 10S".• :• it has became a quasi standard •or ..... benchmarking small vocabulary
s-,ea!:er-indeoendent recognition systems. The error ra•e has reduced by more
tha;• a factor of 5 since the first, published results.

_-dos of d2e current state of the art T'i£-Digits recognizer systems use wholeS .... •.p
,,.•,,_.,- modeling, cross-word con•ex>dependence, gender dependent, models,
and more elaborate training procedures. Currently, the Rest reported Ti-
DiN.o ..... .... recogmzer uses whole worr4 mode] v,_tn rater-word triphone context.
depen,:!ence, continuous density HMM for acoustic mode!ing• a training pro-
cedure that performs string error rat, e _•ninimization, and _X-best fbr decod-
in• [2]. This system yields an error rate of 0.24'70 on word leve! and 0.72%

on strin• level. A relative!y simo]e h!brid HMM-MLP system that does not
S' ' oe•de• deoendence nor context dependence (but still use whole-word

n!ocel © __ .
models) ]de]ds !n error rate of" 0.89•0 on the word ievei and 2.51• on the

[ o
"•';•-• level p]. Kov:ever. when the likelihood estimations fl'om this MLP

<.s•ern are con-,})b•e•i wit!-, ' -" mu•.u-P.•-.,,:auss•an likelihoods, the •esulting error
race is @.59•: on the word level and 1.7• on t.he string level.

E'or our e:•:oeriment, a total of 8628 sencences [I,202,889 frames) are used for
tra;ning and development, while 8700 sem•ences are used for testing. Similar
tcothe-" laboratories, the speech data is digitally filtered to telephone band-
w:¢£1• LoOu±lz - 3.21<nz; and downsampied to 8kHz. Since we wished to use
the techniques that were developed for large vocabulary recognition on the
small tasks• no specialized structures designed with knowledge of the prob-
ien: were used in developing this system. HoweveL t.o fully take advantage
of• the t!-emendous number of training patterns• we used a larger MLP than
v:e ]mad used on Numbers'93• with 1000 hidden units. The recognition result
aft!k- four iterations of training on our nhonemzc Rased context-independent
SFSCen2 was 0.9% word error rate and 2.Tc/• string error rate.

This recognition result is comparable to that of the whole-word model Rased
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hybrid system reported in [8] at the expense of using more parameters. Since
whole-word modeling is not the objective of ICSI's research on large vocab-
ulary size continuous speech recognition, we are unlikely to develop such an
approach for the TI-Digits database. However, incorporating gender depen-
dence and cross-word context dependence should improve the performance of
this particular system significantly.

6 Conclusion

In this paper, we reported experimental results on extending ICSI's speech
recognition method, developed for large vocabulary size continuous speech
recognition, to digits and numbers. The Bellcore isolated digits task was used
to calibrate our methods, and then the approach was ported to a task with
continuously and spontaneously spoken numbers; both were recorded over
the public-switched telephone network. From working with these databases,
we have found that training and recognition could be performed in virtually
the same way that we have done for our large vocabulary size tasks, and that
further specialized knowledge was not required. Due to the moderate size
of the Numbers'93 corpus, a series of experiments with context-dependent
networks were made possible, resulting in good improvements for this task
over our standard context-independent system. Despite its small vocabulary
size, the Numbers'93 corpus is difficult due to its inherently high confusibility
factor in the vocabularies, spontaneity of the utterances, and the acoustic
channel effects introduced by the telephone network. CSLU has announced
plans to distribute the Numbers corpus, and so we hope to see how other
sites compare on this task in the coming year. In the meantime, we tested
our recognizer on the standard TI Connected Digits corpus. The error rate
from our baseline system is higher than a number of other dedicated systems
reported over the last few years, but we believe that a more comparable result
can be obtained if we were to incorporate cross-word context-dependence and
gender dependence. Both of these improvements would generalize to larger
tasks as well, although for cases with many context-dependent categories we
would not tend to simply associate network outputs with categories; however,
as we and others have noted in the past, approaches with multiple networks
or multiple output layers will work for this purpose.

Nonetheless, the results presented here appear to show quite convincingly
that methods that were developed for much larger tasks scaled fairly easily
(and without fundamental changes) to completely different and smaller tasks.
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ABSTRACT

Complex multidimensional data may naturally require
the decomposition of a regression/classification prob-
lem over local regions. Moreover, both global and lo-
cal anisotropy can be present. We propose to address
both problems with a flexible neural network struc-
ture embedding data quantization and coordinate trans-
formations. The solution is applied in this paper to
speaker normalization. The spectral mapping is real-
ized as a. weighted superposition of local neural map-
pings, estimated between subregions of a new speaker
acoustic space and that of a reference speaker, com-
bined with global and local space transformations. The
local mappings are realized using the Gen eralized Re-
source Allocaiing Network (GRAN) model, a general
RBF scheme that allows recursive allocation of kernels.
The space transformations are based upon projections
over the principal components, separately estimated for
the global space and for the local subregions of the input,
and output acoustic spaces.

1 INTRODUCTION

This paper deals with a major problem arising when speech recognition
technology is moved from laboratory to "real world". Changed acoustic
conditions in the environment and inter-speaker differences introduce a
mismatch between training and testing acoustic data, often significantly
affecting speech recognition performance. For this reason, relevant re-
search efforts recently have been devoted to both speaker and channel
normalization.

A novel solution, based on an extension of the Radial Basis Function
(RBF) model, is applied in this paper to speaker normalization, consid-
ered as a regression problem between multidimensional acoustic spaces.
The aim of the neural network module for speaker normalization is to
minimize differences between transformed acoustic data and the data
from which a speech recognition system has been modeled. However,

0-7803-2739-X/95 $4.00 © 1995 IEEE
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the relationships between acoustic feature spaces of two speakers are
complex, non linear, and hardly can be exploited using a single global
regrssion model. The mapping function between the acoustic parame-
er sPace ofthe a ca'speaker and that of the refe rca cc speaker (for whom

the speecl• recolgitioti system is trained) is also called spccheal in appimg
[1. 21. A similar mapping has been synthesized by Multi-Layer Percep-
tron netwxorks by other researchers [3, 4].

AV previous paper introduced (RA iN networks for speaker normaliza-
tiola [5]. The neural network was applied as a front-end preprocessor
for a continuous speech recognition system (speaker dependent, HAMM-

ase d) to normalize the input acoust ic data from a new speaker. The
experiments were performed on the speaker-dependent portion of the
ecoustic-lphonctic continuous speech corpus APASCI [6]. The mapping
was realized wvith a single, global GRAANnetwork trained on 40 sentences:
pione recognition error was reduced with at average adaptability ratio
of' 25%A(5K (see later for a definition of this index).

In this paper. the realization of the global neural mapping is proposed as
a weighted superposition of local mappings, estimated between pairs of
s.jbregions of the input (that of the new speaker) space and the output
fthat of reference speaker) space, combined with global and local space
transformations. These transformations are based upon projection over
the Principal Components. separately estimated for the global space aid
for the local subregions of the input and output acoustic spaces. The
resulting architecture is introduced in Section 2, and the network model
presented in i3. Task, speech recognizer aid set-up of the normalization
experiments are described in Section 4, while experimental results and
conclusions are given in Sections .5 and 6, respectively.

2 THE ARCHITECTURE

The rationale for the proposed architecture is that complex multidi-
mensional data can naturally require the decomposition of the regres-
sion/classification problem over local regions. Moreover, both global and
local anisotropy can be present: it is often useful to deal with "standard-
iz -d" ldata, thus 'sphering the data" is a common procedure in speech
processing applications. Here both the decomposition and the anisot ropy
problem are addressed at the same time with a flexible neural network
structure embedding data quantization and coordinate transformations.
The overall structure of the architecture is given in the commutative
diagrai in Figture 1. The idea is that of combining:

1. a factorization of the regression problem with coordinate
transformations designed to reduce speaker-dependent data
anisotropy;

2. the estimation of local regression models (locally the "best"
models) where subregions are defined by a clustering procedure;

3. the estimation of the global mapping as a weighted sulperposition
of the local mappings.

The coordinate transformations are realized as a linear transformation
applied to the data after subtracting their mean. This affine linear map-
ping may not be invertible, especially if we are interested in considering
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transformation of data into their Principal Components space, and pos-
sibly in performing dimensionality reduction. In this case, the global set
of data or its subregions can be treated as varieties of lower dimension in
the regression problem, but care must be taken in re-embedding the data
in their original space, if necessary. This paper considers only invertible
coordinate transformations and no dimensionality reduction criterium is
applied. Global PCA mappings are first applied to standardize data with
respect to global anisotropies (see Fig. 1 upper part) of the two speakers.
Then, the standardized spaces are subdivided into regions using a clus-
tering algorithm (e.g k-means): for each region, a couple of specific PCA
transformations is estimated to reduce local anisotropies (Figure 1, lower
part). Following the steps detailed in Figure 2, the problem reduces to
the estimation of a multivariate regression for each locally standardized
subregion.

Any admissible regression scheme can be considered in the realization
of the local mappings, and they may actually based on different regres-
sion schemata. For these mappings, a nonparametric regression smooth-
ing method was applied, the Generalized Resource Allocating Network
(GRAN) model, a general RBF scheme which allows recursive alloca-
tion of kernels. As commented later in this section, the recombination
of the local mappings again can be obtained as a realization of an RBF
network.

As expected, the selectivity of local basis networks can be exploited spe-
cializing learning over L subregions of the acoustic space. Therefore,
a superposition of GRAN networks, where contribution to the result-
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of statistical information about the characteristics of data distribution
within the local regions and that of optimization of weight parameters.

3 THE GENERALIZED RESOURCE
ALLOCATING NETWORK MODEL

The RBF network model applied in this paper introduces recursive allo-
cation of elliptical kernels within the Generalized Regularization Network
approximation scheme in [13] according to a heuristic procedure of [14].
The Geineralized Resource Allocating Network (GRAN) model is thus a
nonparametric kernel regression method that allows optimization of ker-
nel coefficients and locations, of different local bancdwidths for each coor-
dinate. The model includes an affine linear term and a weighted metrics
is considered in the input space in the general case. The optimization
of the weighted metrics is implemented, as in the generalized versions
of RBF networks of [15]. Efficient on-line optimization of parameters is
achieved by an automatic differentiation technique, which allows reuse of
network evaluation for on-line optimization of parameters with respect
to different error functions (L,, LI, Entropy fit) with different learning
rates for each type of parameter. Implemented kernels are Gauss, Hardy
multiquadrics, inverse of Hardy multiquadrics and Epanenchnikov ker-
nels, also in the Nadarava-Watson ("softmax") normalized form [16].

Classical RBF learning, i.e. kernel placement via clustering and compu-
tation of kernel coefficients via SVD estimation is also available. Specific
architectural, parameter and learning choices for the speech normaliza-
tion experiments are discussed in Section 5.

4 THE EXPERIMENTAL SET-UP

4.1 The APASCI Corpus and the Speech Recognizer

Continuous phone recognition experiments were performed on APASCI,
an Italian acoustic-phonetic continuous speech corpus [6] containing
speech material for speaker independent (3900 utterances from 176
speakers) and speaker dependent (520 utterances for each of 6 speakers)
speech recognition. The speaker dependent portion of APASCI consists
of speech signals collected from the 6 speakers (3 females and 3 males).
For each of them a training set consisting of 400 utterances and a test set
of 120 utterances are available. Training and test set were acquired on
different d ays and in multiple acquisition sessions. For each speaker an
adaptation set of 60 utterances is also defined as a subset of the training
set. On average, the duration of the signals is 5 seconds.

Each signal of the corpus was analyzed and, for each frame, 8 Mel Scaled
Cepstral Coefficients (MSCC), the log-energy, their first and second or-
der derivatives were computed obtaining a feature vector of 27 compo-
nents.

The experiments with the APASCI corpus were carried outv with Hidden
Markov Model (HMM) recognition systems based on 38 context inde-
pendent acoustic-phonetic units. Each speech unit was modeled with a
left-to-right [1MM, with the exception of the HMM modeling the silence
for which a single state ergodic topology was adopted. The output prob-
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a bhilit' distre lI o01s wcrI mode 0led with mixture's of 16 Gaussian proba-
'i'Lv desit 1,I>es lIav II diiagonal covarPI ance ii wrces. Transitions leavingan sae sham 11red t 11a71e olitplit disfribult ion 1)robabilies.

[ior 1ah ot tle G s ipeikers in thle datalase, all HAMM sapeaker dependent
:/D i) reco0gnitio0 0 svst.m was tI ained with 400 ott rances after bootstrap-
1)1ý1 0t se1 dependent tii odels tusing the se-1 dN e tiI(ent speech mate rial
(100Ct 1Il ram cs fhol i50 m1al speakers and 1110 uttterances from 50 fe-

I>ale soeakers) availabhe in the speech corpus. For each speaker, the test
mat1ria con1sist.(1 of'90 et! terances from the speaker dependent lest set,
01'esildlga oil average, to 1 770 phone units.

2 Ba a PD ooa±>ainn

Duringi ei:(rý,etts a S) recognition system trained for the reference
,,wake' is testedl w.iith the test materiai of 11e011 speaker. Il order to

<itiniate a feature vocxor I ransformation from t[e acoustic space of the
nev i speaker to that of the lfrc~ Ince speaker a set of phrases aii iittered
1ty e te -p sealirs. 1ol. each phrase, the parametric representations of

ýllý signIals 1titr(d i6v the ii efIruce speaker arid the new speaker are time
ii .' ed y mea is of the Dyinamic Time Warping (IT\V) algorit1im and

set of f al tire vector 1]airs are obtained according to the DUW optinal
pih. IN the rei ported expirhi liclts. the paillaeitric represent atilon used
f'oi" 1tteraiinc ti'e 1ia1 1111lient and spectral mapping consisted ofS AISCC.
E1C ftalutne vector pair reprisents simultaneous observations from the
acoustic spaces of ihe two speakers. The set of featr ore vector pairs so
o tarimed forms the training set. for the speaker normalization module.
The ti itera1C1s 51seid isr normalization p1irpose b gongs to the adaptation

of the two sal cis. For details about tlhe time alignllment procedliro
suimn-_arized above s1 [5].

43 P{m-fo, i mi na•_ ,LTc i,,asire~s

In Ihis i-orki continioulls phone reco1nition experiments were performed
w~hou any lexical and phioneticai constraint (no phioeii statistic was

1is-d). Recogiition results are expresseds iu terms of the number of ill-
sertlions (las), deletions (Do!) and substitutions (SuS) of phone 11nits
made b. t i e recoi0i7er. As ustla, Unit, AccuIracy Cl and Percent Cor-
rect 100 performance indicators are defined as [A1 = 100 (1 - (Ins +
Do!,muf)fii ) and PC'= 100 (1-(Drl+,`-i'ut)f/I,,l ), where i>,Ou.
's the total uuiiiber of' illits in tir test set.

111 (7OpOab i./I railosi were aiso considered as canonical indices of adap-
t10Iot,// orimlizai/ on performance: let, a [TA and ip = PC', we define
tlwe conrspoidi i adaptability ratios as

A RT -- (IRT PI, T - P)RT

URR - (IRT })RR - POT

whe1 Pre r indicat1 recognition accuracy for reference speaker R and
art ' 1wtitohioPI noraizait 01. cs/ iS tihe sill01ak" depenpent baselile

0recog0ition icclracv and superscript n indicates that normalization is
ip rfTo nsed. The sam11 notation applies for the percent correct atiapt, abil-
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5 EXPERIMENTAL RESULTS

As discussed in the previous Section, the normalization task regarded a
multivariate regression problem with 8 inputs and 8 outputs that is diffi-
cult for kernel-based methods. The training set for each pair of speakers
in the database consisted of 7,000 input-output pairs of vectors on av-
erage, but the classical RBF bootstrap from estimation of the kernel
locations with a clustering procedure and SVD computation of kernel
coefficients did not give encouraging results. It is possible that in this
task the relevant variations of the spectral mapping take place in regions
of the (input) acoustic space which are not correlated with higher density
of data. The recursive allocation of kernels allows local fits to be realized
corresponding to data where a significant approximation error is present
clue to the mapping non-linearity. For this reason, the typical learning
procedure was first to fit the linear term to the data, and then to start
allocating elliptical Gaussian kernels by fitting the residuals of the lin-
ear regression tip to maximal number of kernels. The Nadaraya-Watson
("softmax") normalization was considered for each kernel. On-line gradi-
ent descent was applied when not allocating a kernel: metrics and offset,
term were kept fixed, and optimization of kernels regarded center po-
sitions, local bandwidths (different for each direction), and coefficients.
Moreover, the linear term was re-estimated in this phase and different
learning rates were adopted for each parameter classes. The following
experiments were performed to test the validity of the model and of the
architecture in this application.

The first experiment involved a female reference speaker (ancoO) and
a male new speaker (saorO) with a training set of 15 sentences and a
test set of 90 sentences (see Subsection 4.1). A single global network
was trained for 10 epochs allowing different maximum numbers of ker-
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UA PC, p• p.,

SD 64.56 70.87 -
LN 6090.48 733 0.237 0.262

otN 69.78 75T.T7 0.2T)1 I.A5

Table 1

T he last, experiment was performed as an average performance evaluation
over 30 cross-experiments for all the different pairs of (new, refcrencc)
speakers. Performance is analyzed in terms of Unit Accuracy, Percent
Correct and their adaptability ratios. The average phone recognition
rates obtained withi normalization modules based on the GRAN model
(NN row) are reported in Table 1 and compared with the, baseline per-
formance (SD: no adaptation) and those of linear transformations (LIN)
in the 4 cluster case. The use of local models allowed an improvement
of the U.4 and PC performance, evidenced by the p, index, comparable
with that obtained with a single global GRAN model and 40 sentences,
as reported in [5].

6 CONCLUSIONS

The experimental results evidence interesting performance of RBF net-
works (GJRAN model) in speaker normalization. The improvement of
recognition performance results with the proposed architecture allowed a
significative reduction of the adaptation material from 40 to 15 phrases.
Further improvements are expected considering different weight func-
tions and their optimization. In particular, it is important to increase
the performance with respect to the local linear method. Moreover, the
local feature transformation mappings may be exploited to realize local
mappings between dimensionality reduction. Finally, the experiments
demonstrated once more the importance of controlling the size of the
models according to estimates of the VC dimension of the task.
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Abstract

This paper investigates methods for incorporating discriminatory
information into speaker recognition systems. In particular, this
information is used to supplement non-discriminative modeling ap-
proaches, such as dynamic time warping (DTW) and hidden Markov
modeling. The discriminative information is obtained from the neu-
ral tree network (NTN) and is integrated with the non-discriminative
models via data fusion. Here, the outputs of each model are com-
bined with two data fusion methods know as the linear opinion
pool and log opinion pool. These methods are evaluated for text-
dependent speaker verification for two databases. For both ex-
periments, the consensus driven system outperformed the systems
based on individual models.

INTRODUCTION

The conventional approaches to speech and speaker recognition are generally
based on modeling the data for a given class. For example, numerous utter-
ances of a specific word or phoneme can be used to train a hidden Markov
model (11MM) for speech recognition. Likewise, numerous utterances from
a specific person can be used to train a HMM or vector quantization (VQ)
codebook for speaker recognition. Here, the model will capture the acoustic
characteristics of that class, such that future utterances of the same word, or
from the same speaker, will tend to score well upon that model. However,
the information that is typically ignored by these training methods is that of
how to discriminate from other classes.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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Several methods have been proposed for incorporating discriminatory in-
formation into the model design. One method is to use discriminative training
[1]. Here, a loss function is used that minimizes the classification error and,
hence, incorporates information from other classes. Discriminative training
has been used for speech [2] and speaker [3] recognition. Many other ap-
proaches for obtaining discriminatory measures are based on hybrid models,
i.e., those that integrate a discriminative classifier with a non-discriminative
classifier. For example, multilayer perceptrons (MLPs) can be used to es-
timate the observation probabilities [4] in HMM-based recognition systems.
Here, the MLP can provide discriminative information, which is not available
from the alternative Gaussian mixture model approach.

This summary explores an alternate means of hybrid model design for
incorporating discriminant information into speaker recognition classifiers.
The technique used here to combine the models is known as data fusion. Here,
the models are trained separately and their respective outputs are combined
during testing. The following section provides a brief description of speaker
verification along with the modeling approaches that will be considered here.
Several methods for combining the scores of these models are then described.
The composite systems are evaluated for a text-dependent speaker verification
task and the conclusion of this paper is then provided.

1 TEXT-DEPENDENT SPEAKER VERIFI-
CATION

The objective of speaker verification is to verify a person's claimed identity
based on an utterance from that person. This is in contrast to speaker identifi-
cation where a person is to be identified within a population. A distinguishing
feature of speaker verification systems regards the form of spoken input, which
can be text dependent or text independent. Text-dependent speaker recogni-
tion systems require that the speaker utter a specific phrase or a given pass-
word. Text-independent speaker identification systems identify the speaker
regardless of the utterance. This summary focuses on text-dependent speaker
verification.

Several speaker modeling methods are considered in this paper. These are
based on the neural tree network (NTN), dynamic time warping (DTW), and
hidden Markov models (HMMs). The NTN bases its decision upon discrimi-
nant information whereas the DTW and HMM methods utilize a distortion or
likelihood measure. Hence, these two classes of methods use criteria that are
somewhat complementary. The NTN, DTW, and HMM methods of speaker
verification are briefly described as follows.

244



1.1 NEURAL TREE NETWORK

The NTN [5] is a hierarchical classifier that combines the properties of decision
trees and feed-forward neural networks. For speaker recognition, the training
data for the NTN consists of data for the target speaker labeled as "one"
and data from other speakers labeled as "zero". The NTN partitions feature
space into regions that are assigned probabilities which reflect how likely a
speaker is to have generated a feature vector that falls within that region. The
NTN has been evaluated for text-independent speaker recognition [6] where
it was found to perform favorably for open-set problems, such as speaker
verification.

There are several approaches for applying the NTN to lext-dependeni
speaker recognition. One method is to train the NTN to discriminate between
a password spoken by the target speaker and the same password spoken by
other speakers. This can be interpreted as a "whole-word" NTN. Another
method is to build "sub-word" NTN models [7]. In this case; the password of
the target speaker will be segmented into sub-words, i.e., phonemes. A NTN
will then be trained for each sub-word unit, where the anti-class data will con-
sist of the data from other speakers' utterances of that sub-word unit. These
models can then be concatenated to form passwords. The "whole-word" NTN
will be considered here. Note that this method does not utilize the temporal
information of the password. This information can be obtained, however, by
combining the results of the NTN with a temporal-based model, such as that
obtained from the DTW or HMM method.

1.2 DYNAMIC TIME WARPING

The DTW algorithm is a distortion-based approach for time aligning the dy-
namics of two waveforms. For speaker verification, a reference template can
be generated from several utterances of the password [8]. These utterances
are combined to form a single reference template using a modified k-means
algorithm [9]. Then during testing, a decision can be made to accept or re-
ject the claimed identity based on whether or not the distortion falls below a
predetermined threshold. To allow for subsequent fusion with other speaker
models, such as NTNs, the DTW distortions must be converted to a com-
patible scale, i.e., a probability. We accomplish this by simply raising the
negative distortion to an exponential.

1.3 HIDDEN MARKOV MODEL

A hidden Markov model (HMM) is a stochastic finite state machine that can
be used to model sequences. HMMs are the predominant technology used in
speech recognition and have also gained much popularity in text-dependent
speaker verification. Here, numerous utterances of a password from the target
speaker can be used to train a sub-word [10] or whole-word [11] HMM. During
testing, a decision can be made to either accept or reject the claimed identity
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based on whether or not tihe likelihood score exceeds a threshold. IlMMs
have been showni to outperform DTM [12] for applications where a sufficient
amotntt of training data is available.

2MODIEL C1ODIIeTIATHIO1\©iT ETE1-ZDDS

There are inumerous ways to combine the opinions of multiple experts. For
e.omple, if tie outitputs of all experts are probabilities then a simple comb>-

onatlo method would he to take a weighted sum of the probabilities or of the
lo0s of the probahilities. These methods are known as the linear opinion pool

ccd lo opiuion pools [13], respectively. If the outputs of the experts are class
1b es, then methods such as voting [14] or ranking [15] can be used. For
fuzzy decisions. Dempster-Shafer theory can also he used for the combination
of experets [14]. This paper evaluates the linear and log opinion pool methods
fo- text-doepedent speaker verification. These methods are described in more
detail as follows.

2.1 LllTrEAŽP DEL T0011' POOL

The linear opinion pool is a commonly used data fusion technique that is
co n'eient due to its simplicity. The linear opinion pool is evaluated as a
v, eighted suite of tie outputs for each expert:

Plm.. 5(-) o.aPi(x), [1)
i=1

,where P:,,-(x) is the probability of the conbined system, ai are weights,

- (;c) is tthe probability output by the iP expert, and 0 is the number of
experts. For all exltperiheents in this paper, co is between zero and one and the
sune of the n's is equal to one.

The licear opieion pool is appealing in that the output is a probability
d -out Con and the wnegles ai provide a rough measure of the expertise of
the expert. However, it is noted that the probability distribution of the
coenieiner outoput may be multiteodal, which may impose a niore complicated
decision strategy.

2z/ .. O> OPITN'IOIT POOL

c'~- --eative to the linear opinion pool is the log opinion pool If the cc
wei-hts are constrained to lie betweeen zero and one and sutne up to one, then
the log opinion pooi also outputs a probability distribution. However, as
opposed to the linear opinion pool, the output distribution of the log opinion
oool 's uniiodal [13].
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The log opinion pool consists of a weighted product of the expert outputs:

n
Plgx = r iW.(2)

i=1

Note that with this formulation, if any expert assigns a probability of zero,
then the combined probability will also be zero. Hence, an individual expert
has the capability of a "veto", whereas in the linear opinion pool the zero
probability would be averaged in with the other probabilities.

One problem that both the linear and log opinion pools are subject to is
the selection of the weights ac. Several heuristic solutions [13] to this are to
1) use equal weights, i.e., ai = 1/n, 2) use weights proportional to a ranking,
i.e., ai = ri/ EnZI r, or 3) evaluate the weights over the range of zero to one
for cross-validation data and select the best cai. For the experiments in this
chapter, plots for the third method are provided.

The linear and log opinion pools have been applied to various applica-
tions in speech and speaker recognition. The linear opinion pool has been
considered in speaker recognition for the combination of features [16], namely
cepstrum and delta cepstrum features, and also for. the combination of clas-
sifiers [17]. Both the linear and log opinion pools were evaluated for speech
recognition for the combination of several features [18].

3 EXPERIMENTAL RESULTS

The first database used to evaluate the system was collected over a telephone
channel. All of the handsets utilized electret microphones. The speech ac-
quired through the telephone channel is sampled at 8 kHz, and t-law coded
at 8 bits/sample. The speech signal is pre-emphasized with a pre-emphasis
factor of 0.95. Features are extracted within 20 millisecond analysis win-
dows having 5 millisecond shifts between consecutive analysis windows. The
features extracted from the analysis windows consist of linear prediction (LP)-
derived cepstral coefficients.

The system is evaluated with data from 20 male speakers. Fourteen utter-
ances of the state, "New Jersey" are collected from ten of these 20 speakers.
Four utterances are used to train each model and the remaining ten are used
for testing. For the remaining ten speakers, ten utterances of the state, "New
Jersey" are collected and used as imposter utterances for each of the first ten
speakers. This database allows for 100 true speaker trials and 1000 imposter
trials. Note that a pre-existing database is used to provide the antispeaker
data for the NTN training. This antispeaker database contains four utter-
ances of "New Jersey" from 20 male speakers. The 10 imposter speakers used
to evaluate the false accept rate are not included in the antispeaker database.

To illustrate the merit in combining a discriminative model with a non-
discriminative model, a scatter plot for one speaker is provided in Figure 1.
Here, the "x" and "o" labels correspond to the speaker and imposter scores
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Equal error rate for varying alpha
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Figure 4: Equal error rate versus alpha

with the first four speakers as imposters. Each target speaker is modeled with
both a NTN and HMM. The HMMs each have eight states and are trained
with the hidden Markov model toolkit (HTK) developed by Cambridge Uni-
versity. The verification utterances are based on the utterance of one digit,
which yields a total of 1200 target speaker trials and 8000 imposter attempts.
The equal error rate plots as a function of alpha are shown in Figure 4. The
equal error rates of the NTN and 11MM classifiers when used individually are
10.6% and 8.70%, respectively. The best performance for the combined system
is an equal error rate of roughly 7.3%. Unfortunately, this database does not
contain a large population of speakers to be used as imposters. However, the
experiments still show the relative improvement, that can be obtained when
using a consensus-driven system.

4- C'ONCLUSION

Several consensus-driven systems have been evaluated for incorporating dis-
criminative information into text-dependent speaker verification tasks. The
first system combines information provided by NTN and DTW models. The
second system combines the NTN and HMM. The linear and log opinion

pools are evaluated for combining the multiple sources of information for two
text-dependent speaker verification tasks. In both experiments, the combined
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classifier system provides a lower equal error rate than either classifier used
in isolation.
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FROM ARTIFICIAL NEURAL NETWORK

INVERSION TO HIDDEN MARKOV
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Abstract

The gradient based hidden Markov model (HMM) inver-
sion algorithm is studied and applied to robust speech recog-
nition tasks under general types of mismatched conditions.
It stems from the gradient-based inversion algorithm of an
artificial neural network (ANN) by viewing an HMM as a
special type of ANNs. The HMM inversion has a conceptual
duality to the HMM training just as ANN inversion does to
ANN training. The forward training of an HMM, based on ei-
ther the Baum-Welch reestimation or gradient method, finds
the model parameters A to optimize some criteria, e.g., max-
imum likelihood (ML), maximum mutual information (MMI)
and mean squared error (MSE), with given speech inputs s.
On the other hand, the inversion of an HMM finds speech
inputs s, that optimize some criterion with given model pa-
rameters A. The performance of the proposed gradient based
HMM inversion for noisy speech recognition under additive
noise corruption and microphone mismatch conditions is com-
pared with the robust Baum-Welch HMM inversion technique
along with other noisy speech recognition technique, i.e., the
robutst MINIMAX classification technique.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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TIe idea of nonnaranretFirtrir icvsroir" [1] originates from the study of arti-
aicme] neural networks (ANNs), which are commonly used as non-paraiietric

un'versal aeprio run ors [2] to model tile functional relationship between in-
_buts x and orutputs y with interconnect ion weights xv, i.e., y = b(w,x).
T i(•,1)dy of an ANN finds the ANN's weigh/s w that optimize some criterion.
usually nuiniitm mean-squared error (MMSE) [3]. Jnec.siorr of an ANN finds
the niMp s x tilat opti0m1ize sOlle criterion while keeping the weights of an ANN
irrtcr j1]. Both the training and the inversion of ANNs corllmonly adopt the
gradient descent based itrratrve search in the optimization procedure.

The close structural and algorithnric relationship between a hidden Markov
model (tIBIM) and an ANN has been well established [4]. For a continuous
density multi-mixture (CDiMNI)-HMM, the model parameters consist of five
majo C c•:mporentts A {w, A. ,E, C w, where = {7rj denotes the set of
initial state probabilities, A = {ojo} is the set of state transition probabili-
ties. p = {/t•.} is the set of mean vectors of Gaussian nlixtures, E = {ýEj>}
is the set of covariance matrices of Gaussian mixtures, and C = {cc. } is tihe
se' of' intensity weigghting of Gaussian mixtures. The 1I1r\P\ output (likell-
hood) probability P(sIA) can be defined as a function of model parametlers
A and speech inputs s, i.e., P(sIA) = i(s, A). Based on the functional de-
pciidency of the TIM111s outiput likelihood to the model parametters A and
inlputs s. it, is easy to generalize tihe inversion of an ANN to the inversion

of an 1121M. More specifically, the iireversior of an HP1MM finds speech inputs
s lhat optimize some criterion with given model parameters A. Unlike al1
ANN whhich mainy utilizes tire gradient based optimization technique in tihe
trainirng aild the inversion process, an HMM has a very efficient Bauim-Welch
type, of training [5] and inversion [61 procedure. The Bauci-Weich type of
H).JM inversion has been successfully applied to robust speechl recogniiOil
tasks and produced very encouraging results [6]. The gradient-based I1MM
inversion cair siniarly Ive applied to robust speecih recognition tasks by mov-
iTn thi itput speech features toward the means of Gaussian mixtures with
entpropriate constraeiits, e.g., robilnserss borrd co st/raillr [7]_

2 7in4ersmc-r• of xidden MarkeV IAodei s

2oi Gradlient-Based HIMM Inversion

Given aian A-state and K-rllixture CDIMM-ItiMM, the observation probability
of tie i-th iiput speech frame sr (normally in terls of pre-processed featcrres,

e.g.. order P cepstral coefficients) of a T-frame speech S - {= S, S2,. -, ST) at
sra e i is delfined as [8], where i = 1,. N.:

K c, -- CXp> 1 (s. /,I A )~ £717 (s1  ik) 1
I), (i S1)=T J2 -i i

k. = I ((2 j)' P 1 • •i /- 2 2
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Note that the nonlinearity is introduced by the mixture Gaussian density
functions in each state. Let Ot denotes the state where st resides in, we can
recursively calculate the forward probability oi(i) P(si, s, and Ot =
iIA) and the backward probability ýj (t) = P(s+l,., ST A i and A) as
follows [8]:

N
ai(t) = bi(st). - aji .aj (t - 1), / = 1,. N, (2)

j=1

N

i (t) = aij bj(s,+) . 3j(t +1), i=1, N. (3)
j=1

By treating an HMM as a special type of ANN's, the gradient-based inver-
sion of an HMM for the 7-th coefficient in st can be derived with the metric
function COPT(A, {st}) to be maximized:

8 0
oPT

St7- stt + 7" Ost ,• (4)

where COPT = logP(s[A) = log1N(T) under the maximum likelihood (ML)
criterion, P(slA) is model probability (likelihood) and is equal to the forward
probability from a single final state CeN(T). The gradients C can be

further expanded using the chain rule [9]:

OCOPT N OCOPT Obi(st)0 st, O_ bi(st) Osj,, (5

and the first derivative in Eq.(5) with respect to bi(st) becomes:

OCOPT 1 Oa(N(T)
Obi(st--- --- O (T) Obi(st). 6

The aN(T) can be recursively expanded using a chain rule:abds,)

O•N (T) OUcN (T) Ocei (t)
Obi(st) O,•(t) Obi(st)

N &cYN(T) Oaj (t + 1) N

- (Z�l cej(t + 1) -i(t) ( 1aj i, - J (t--I))
3=1 j=1

N OaN(T) N
(E1 ( -bj(s&,+).-aj). (E j .(t- 1)). (7)

a=zýj(t + 1) b1 s+).a j=1 ( a= j=l

Note that the derivative is equivalent to backward probability 13i (t)

defined in the standard HMM (as shown in Eq. (3) and Eq. (7)) [4, 9, 10].

OaN(T) N OaN(T)_u (t ~j (s, + ). aij aao(t + 1) )
da'ji± 1)

j=1
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with �Ck\(T)
Jo yET) - 3,Jx (7) =1.

The second derivative "'(s" in Eq. (5) can he calculated by differentiat-

ins Eq. (1) [9]:

A"- P(s

(9)
where 9> ,i.-denotes the (1, "r)-th element of the i-th state and the k-th Gaus-
Sian mixture's inverse covariance matrix 'I and Pik, is the r-th coefficients
of the i-th state and the A'-th Gaussian mixture mean.

The gradient-hased inversion of an 11MM with maximum likelihood opti-
mizarion criterion Co1 7 , is derived using Eq. (5), (6), (7) and (9).

N K

i=- () + .f- )( (() 3) () p •'

-IS '_ ( •( -) •_ ) ),04

1=1

2.2 Baum--Weich •1VEM• Inversion

The Baum-WVeich 11AMAl inversion maximizes the auxiliary function Q(A, A: s, s')
defined as:

Q(,. A: s, s') = E_ •P(s, O, JVI),) . oP(s', O, •V [A ), (11)

0 K

where 0 and k denote the possihie state transition sequence and the Guassian
.mixture segment ation sequence, respectively, for a T-frame speech utterance
s f {s , 1 < .< T/1.

The problem of the inversion of an N-state and J-mixtnr-e HAIM is to
find s that maximizes ()A, A,; s, s/). Note that, the auxiliary function with
observation probability, b;(.(), can be expanded as [5]:

T T T

_ > P(s, 9, YVIA) .{logcrga + f logo_,-,Ot +E logbop,. (s't) + E logce, }.
t f 1 t=1 t=l

(12)
By euating the derivative of Q(-) with respect to s't to be zero, i.e.,
a0sA, A - 0 (the steepest ascent method),

eO(A. S, S') a - T

L L _ P (s, 0, /V IA ),) lo gb, p, (s'>) ]

0- 1 ,I b, , sas' K/ 0 v=1

NK

= f_ % RP(s, i, kIA) . (s, - m,-) 0, (13)
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we can find the reestimated inputs st,
N-•

t = _ N1  K P (s , i , k lA )
Ei=1 Ek=1

SiEKIi 
(14)

By substituting P(s, i, kIA) with j:N 1 a(t-1)ajiCibs the Baum-

Welch inversion algorithm is derived.

Ei= k=-i E', c0j(t -l)ayicikbik(st)3i (I)Pik

t EN o4 ( -K 1E (15)
i= k=l Z j:I oj(t - 1)ajicikbik(st)3i(t:)

2.3 Duality Between HMM Reestimation and Inversion

There is a duality, in the sense of maximizing paradigms, between 11MM
reestimation and HMM inversion. As discussed previously, both HMM rees-
timation and HMM inversion algorithms can adopt either the Baum-Welch or
the gradient-based optimization techniques. 11MM inversion moves the input
speech {s} closer to the mean {PikI} of a Gaussian mixture by fixing the mean
location of each mixture. On the other hand, the 11MM reestimation moves
the mean {Pik} location of each Gaussian mixture closer to the input speech
{s} by fixing the input speech location. Figure 1 shows the conceptual dif-
ference between HMM reestimation and inversion, where mean {/ik} of each
Gaussian mixture is marked as 'o', the noise-free input speech {s} is marked
as 'x' (without specifying the time indices), and the noisy input speech {y} is
marked as '*'. The HMM inversion algorithm moves noisy speech (*) toward
mean location (o) of a model. On the other hand, the 11MM reestimation
algorithm moves mean location (o) toward noisy speech location (*).

x

X HMM
Xý REESTIMATION

XX

0 0

X0 0

x 0

Figure 1: Conceptual difference between HMM reestimation and HMM in-
version.
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PRobust HMM Inversion

The proposed 11MMI inversion, either by gradient-based or Baum-WVelch meth-
ods. can be applied to recognition of noisy speech by adopting the framework
of robust hypothesis testing, namely the robusi HMM inversion [6]. In the
testing phase of the robust H1MM inversion for classifying Al isolated words,
the HNMI inversion algorithm is used to obtain S, oagmaxsEs$n P(sjA)

which maximizes the likelihood P(slA,7 ), for 1 < 7n < Al, within the mis-
match neighborhood S,,. The mismatch neighborhood S,, is defined as a
non-overlapping subset of in-th nominal speech space around the assumed
model A,,. It starts with the noisy test speech data s by assuming s is gener-
ated from the model A,,. Some constraints are imposed on the movement of
testing speech data s at each iteration of HMM inversion process. Such con-
straint as rob?sl bound which was utilized by MINIMAX technique [7] is found
to be very useful. More specifically, after every iteration of the 11MM inversion

on the noisy testing speech data s [s(t), s(2),-., s(P)], the newly inverted
speech s,.. is checked against the interval I = [S7) - /?r-iFp, s(T) + RT-iPT]
with some predefined constants, R > 0, 0 < p < 1, of the T-th (cepstral)

coefficient s$Q If M$,) is within the interval, it is used as a newly estimated
coefflicient for next iteration. Otherwise, the end point of I which is closest
to the reestimated coefficient is used. After all {• in = 1, .- , M} are con-
verged, the one resulting in the maximum P(T,, •A,) will be classified as the
winner.

According to [8], the norm of cepstral coefficients shrinks in presence of
additive white Gaussian noise (AWGN) and shift due to convolutive mismatch
(e.g.. microphone mismatch). Therefore, scaling (by a factor ofT) and shifting
of the speech are incorporated "before" the robust tIMM inversion so that
a oiMiioai use of inversion is assured to maintain the feasible structure of
original speech [6].

Due to the use of HMM reestimation, which involves temporal averaging
of speech frames grouped to the same state in an HMM, the MINIMAX tech-
nique cannot efficiently compensate the temporal structire deviation caused
by noise corruption. On the other hand, tie HeMM inversion moves the noisy
speech (frame-by-frame) to the Gaussian mixture centers of a model at each
time step. Normally, one dominating Gaussian mixture guides the movement
of each frame of noisy speech. This fact. enables 11MM inversion to move
the noisy speech to the fine details of an HAIM which has been trained with
noise-free speech. This fact also enables the H1MM inversion to deviate from
the original temporal correlation of speech if too much maximization is un-
dergone. To reach a better compromise, the MINIMAX maximization can be
combined with the H1MM inversion maximization in a batch fashion. More
specifically, after completion of MINIMAX maximization which more or less
reshapes the original HMM model to be close to the noisy speech, the robust
H111M inversion is then performed based on the newly reestimated model A
on the testing speech to fine-tune the speech. Instead of combining the HMM
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inversion and MINIMAX in a batch fashion, they can be combined in a se-
quential manner. In this sequential maximization, one iteration consists of
a single-step of MINIMAX maximization and another single-step of HMM
inversion.

4 Simulation Results

Robust HMM inversion is applied to noisy speech recognition to deal with
various type of mismatch conditions. The speech database used in this exper-
iment is TI isolated digit database (M = 10) which consists of 16 speakers'
digit utterances. Ten continuous density HMMs (CDHMMs) with N = 7
states and K = 4 Gaussian mixtures are used to model 10 digits. In the
training phase, 256 training tokens (16 speakers, 16 repetitions) are used for
training each digit HMM. In testing phase, 300 tokens (6 speakers, 5 repe-
titions, 10 digits) are used for one experiment and it is repeated 10 times,
with different random noise seeds, to get sufficient statistics. Various type of
mismatch conditions are simulated, including AWGN, jittering white noise,
microphone mismatch. Jittering white noise is generated by randomly multi-
plying the noise standard deviation for each frame with one of five constants
[11], i.e., constant= {3, 2, 1, 1/2, 1/3}. To simulate the microphone mis-
match effect, noisy speech data are convolved with a 2nd-order FIR filter,
al = -0.45, a2 = 0.55 [11].

Table 1 shows the recognition performance of HMMs in noisy environ-
ments when the mismatch is incurred by AWGN at various SNR. The perfor-
mance of an HMM which can achieve 95.47% accuracy in noise-free (SNR=oc)
environments degrades abruptly to accuracy of 25.73% at SNR of 5 dB with-
out any compensation (see Standard). The scaled robust HMM reestimation
(see Minimax) greatly improves the 11MM performance [6, 7]. For example,
36.73% (see Standard) at SNR of 10 dB is increased to 66.37% (see Mini-
max). It showed consistent performance improvement over the entire SNR.
The robust gradient-based 11MM inversion with pre-scaling (see Inversion(G))
slightly improves the performance of HMM when SNR > 10 dB. The perfor-
mance of robust gradient-based HMM inversion (see Inversion (G)) is appar-
ently inferior to robust Baum-Welch HMM inversion (see Inversion (B)). The
batch combination of the gradient-based HMM inversion and the MINIMAX
technique (see Batch(G)) achieved much better performance. The batch com-
bination of the Baum-Welch HMM inversion with the MINIMAX technique
(see Batch(B)) achieved the highest recognition performance. Scaling fol-
lowed by sequential combination (see Sequential(G)) also achieved similar
performance to batch combination procedure. The robustness bound con-
stants (R and p), the pre-scaling constant (-y), and the inversion rate (q7)
used for these experiments are also shown in the table.

Table 2 shows the recognition performance of HMMs when testing speech
is contaminated by jitter white noise at various level of SNR. Similar behaviors
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for various noisy speech compensation techniques were observed as AWGN
contamination.

Table 3 shows the recognition performance of HMMs when a different mi-
crophone is used for capturing the noisy testing speech at various SNR levels.
This is a quite difficult task for speech classifiers since the testing speech is
corrupted by AWGN (i.e., cepstral coefficients experiences the norm shrinkage
and possibly angular distortion) and microphone mismatch (i.e., cepstral co-
efficients experiences shifting due to convolution with different microphone).
The cepstral shifting compensation was incorporated before the proposed
compensation techniques. For the cepstral shifting compensation, the signal-
to-noise ratio dependent cepstrum normalization (SDCN) technique [12] was
used. After incorporating SDCN technique, the behavior of various compen-
sation technique is similar to the one for AWGN (see Table 1).

5 Conclusion

The Baum-Welch HMM inversion proves to be a more reliable compensation
technique than the gradient-based HMM inversion, despite the fact that the
latter one can sometimes outperforms the former one when best inversion
rate q is chosen. This deficiency in performance can be overcome when using
other more discriminative criterion, e.g., MMI, where only gradient based
robust HMM inversion is applicable. Combination of robust MINIMAX and
robust HMM inversion substantially increased the recognition performance
of HMMs.

References

[1] J. N. Hwang, C. H. Chan. Iterative constrained inversion of neural net-
works and its applications. In Proc. 24-th Conf. on Information Systems
and Sciences, pp. 754-759, Princeton, March 1990.

[2] Halbert White. Connectionist nonparametric regression: Multilayer
feedforward networks can learn arbitrary mappings. Neural Networks,
Vol. 3, pp. 535-549, 1990.

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal
representations by error propagation. Parallel Distributed Processing:
Exploration in the Microstructure of Cognition, Vol. 1, Chapter 8, MIT
Press, Cambridge, Massachusetts, 1986.

[4] J. N. Hwang, J. A. Vlontzos, S. Y. Kung. A systolic neural network archi-
tecture for hidden Markov models. IEEE Trans. on ASSP, 37(12):1967-
1979, December 1989.

261



[5] B. H. Juang. Maxittu-likebbood estinmation for mixture multivariatc
stochastic observations of MIarkov chains. AT&T Technical Journal,
94tG):123.5-124•, July 1985.

1 S.Y. ,10oon0 2.5.. Hwvang. Noisy speech recognition nsing robust inversion
of hidden ITlarkov models. IEEE Intl Conference on ASSP, pp. 145-148,
Detroit Michigan, Mlay 1995.

[71 N. Merhav, C. H. Le . A minimax classification approach with appli-
catin to robust speech recognition. IEEE Trans. on SAP, 1(1):90-100,
7aJnea'" 199.3.

;8 P. Il. Juang-. K. 1K. Paliwal. Hidden NMarkov models with first-order
em]adization for noisy speech recognition. IEEE Trans. on SP, 40(9):2136-
2142, Seotember 1992.

[9] Yoshua Benýio, R. D. Sori, G. Flammia, R. Kompe. Global optimization
of a neural ntwv:ork-liidden Markov model hybrid. IEEE Trans. on NN'
"Vol. 3. No. 2, pp. 252-259, March 1992.

P! 1 Les!>e Thomas Niles. Modeling and learning in speeclh recognition: The
relationship Ibetwcrn stochastic pattern classifiers and neural networks.
Ph.D. Tbesis. Brown University, May 1990.

[i1I B. A. Carlson, IM. A. Clements. A projection-based likelihood meastre
for speech recognition lin noise. IEEE Trans. on SAP, 2(1):97-102. Jan-
uary 1994.

[12i . Acro. R. Mi. Stern. Environmental robustness in automatic speech
recognition. IEEE Int'I Conference on ASSP, pp. 849-852 April 1990.

262



Hierarchical Mixtures of Experts Methodology

Applied to Continuous Speech Recognition

Ying Zhao Richard Schwartz Jason Srokat Joh/n Makhoul

BBN Systems and Technologies, Camnbridge, MA 02138
"tMIT, Cambridge, MA 02139

yzhao@bbn.com

Abstract

In this paper, we incorporate the Hierarchical Mixtures of Ex-
perts (HME) method of probability estimation, developed by Jordan
[1], into an HMM-based continuous speech recognition system. The
resulting system can be thought of as a continuous-density HMM
system, but instead of using gaussian mixtures, the HME system
employs a large set of hierarchically organized but relatively small
neural networks to perform the probability density estimation. The
hierarchical structure is reminiscent of a decision tree except for two
important differences: each "expert" or neural net perfoniis a "soft"
decision rather than a hard decision, and, unlike ordinary decision
trees, the parameters of all the neural nets in the HME are auto-
matically trainable using the EM algorithm. We report results on the
ARPA 5,000-word and 40,000-word Wall Street Journal corpus using
HME models.

1 Introduction

Recent research has shown that a continuous-density HMM (CD-HMM)
system can outperfonn a more constrained tied-mixture HMM system for
large-vocabulary continuous speech recognition (CSR) when a large amount
of training data is available [2]. In other work, the utility of decision trees
has been demonstrated in classification problems by using the "divide and
conquer" paradigm effectively, where a problem is divided into a hierar-
chical set of simpler problems. We present here a new CD-HMM system
which has similar properties and possesses the same advantages as decision
trees, but has the additional important advantage of having automatically
trainable "soft" decision boundaries.

2 Hierarchical Mixtures of Experts

The method of Hierarchical Mixtures of Experts (HME) developed recently
by Jordan [1] breaks a large scale task into many small ones by partition-
0-7803-2739-X/95 $4.00 © 1995 IEEE
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ing the input space into a nested set of regions, then building a simple but
specific model (local expert) in each region. The idea behind this method
follows the principle of divide-and-conquer which has been utilized in cer-
tain approaches to classification problems, such as decision trees. In the
decision tree approach, at each level of the tree, the data are divided explic-
itly into regions. In contrast, the HME model makes use of-soft" splits of
the data, i.e., instead of the data being explicitly divided into regions, the
data may lie simultaneously in multiple regions with certain probabilities.
Therefore, the variance-increasing effect of lopping off distant data in the
decision tree can be ameliorated. Furthermore, the "hard" boundaries in
the decision tree are fixed once a decision is made, while the "soft" bound-
aries in the HMIE are parameterized with generalized sigmoidal functions,
which can be adjusted automatically using the Expectalion-Maximization
(ELIV) algorithm during the splitting.

"Now we describe how to apply the HME methodology to the CSR
problem. For each state of a phonetic HMM, a separate HME is used
to estimate the likelihood. The actual HME first computes a posterior
probability P(I1z, s), the probability of phoneme class 1, given the input
feature vector a and state s. That probability is then divided by the a priori
probability of the phone class 17 at state s. A one-level HME performs the
following computation:

C

P(RUT, s)= P(Qjq, X, S)P(eJx, )()
i=l

where I = 1, ... , L indicates phoneme class, cq represents a local recgion in
the input space, and .C is the number of regions. P(ciI x, s) can be viewed
as a gating network, while P(IJe, a, s) can be viewed as a local expert
classifier (expert network) in the region ci [1]. In a two-level HME, each
region c is divided in turn into C subregions. The term P(jlci, a, s) is
then computed in a similar manner to equation (!), and so on. If in some
of these subregions there are no data available, we back off to the parent
net,,work.

STii•IT- T L DETAILS

As in Jordan's paper, we use a generalized sigmoidal function to paralne-
teize P(C;In-) as follows:

Pp (I)(2)
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where x can be the direct input (in a one-layer neural net) or the hidden
layer vector (in a two-layer neural net), and vi,i = 1, ... , C are weights
which need to train. Similarly, the local phoneme classilier in region ci,
P(lici, x), can be parameterized with a generalized sigmoidal function also:

9T Xe0 "

P(llci, x) = eT (3)
- 2__,de j,

where Oji, j = 1, ... , L are weights. The whole system consists of two set
of parameters: vi, i = 1,...,C and Oji,j = 1,...,L, 0 = {Oji,vi}. All
parameters are estimated by using the EM algorihnm.

The EM is an iterative approach to maximum likelihood estimation.
Each iteration of an EM algorithm is composed of two steps: an Expec-
tation (E) step and a Maximization (M) step. The M step involves the
maximization of a likelihood function that is redefined in each iteration
by the E step. Using the parameterizations in (2) and (3), we obtain the
following iterative procedure for computing parameters &9 {v= , Oji}:
1. initialize v•°) and 0,() for i = 1,..., C,j = 1,..., L.
2. E-step: In each iteration n, for each data pair (x(t), 1(t)), t = i, ... , N,
compute

zi(t)(,) =P(Cilz(t),l(t),O0'•))

P(Cilx(t), vý))P(l(t)]ci x(t), 0(,)= I z(t), i (4)
Ek P(Ck I Xt), Vk')Pl~c 1Wt), k(•

where i = 1,...,C. zi(t)(') represents the probability of the data t lying
in the region i, given the current parameter estimation 9('0). It will be
used as a weight for this data in the region i in the M-step. The idea of
"soft" splitting reflects that these weights are probabilities between 0 and
1, instead of a "hard"decision 0 or 1.
3. M-step:

i= max E zj(t)()[log 1 (5)

8it Zje i6,x 1

V n =1) max E Zk(t)() log evTfx(t) (6)
t k

4. Iterate until Oji, vi converge.
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The first maximization means filting a generalized sigmoidal model
(3) using the labeled data (x(t), 1(t)) and weighting zi(t) t•). The second
one means fitting a generalized sigmoidal model (2) using inputs X(t) and
outputs zi(t)t '). The criterion for fiting is the cross-entropy. Typically,
the fitting can be solved by the Newton-Raphson method. However, it is
quite expensive. Viewing this type of fitting as a multi-class classification
task, we developed a technique to invert a generalized sigmoidal function
more efficiently, which will be described in the following.

A common method in a multi-class classification is to divide the prob-
lern into many 2-class classifications. However, this method results in a
positive and negative training unbalance usually. To avoid the positive and
negative training unbalance, the following technique can be used to solve
multi-class posterior probabilities simultaneously.

Suppose we have a labeled data set, (x(t), 1(t)), t = I, ... ,_N, where
1(t) _ {t, ... ,.L} is the label for t-th data. We use a generalized sigmoidal
function to model the posterior probability P(lIx), where I = 1, ... , L as
follows:

P ) = P(I{X) = e OTX (7)

Obviously, since these probabilities sum up to one, we have

L-1

PL(X) =I - P1(X). (8)
I=l

Now, a training sample x(t) with a class label 1(t) can be interpreted as:

0.9 1 1(t)

P(X()) A l('I(t))

If we define
S=X log IX

S P(x) (10)

equation (10) implies that

eI(XP1(x) - •e•(11)

for I = 1, ... , L with OTX = 0. This expression is the generalized sigmoidal
function in (7). This means, we can train parameters in (7) to satisfy
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Equation (10) from the data. Using a least squares criterion, the objective
is

minE [OTX(t) - log p(X(t))1 
(12)

for 1 = 1,..., L - 1. Denote a data matrix as

X(1)
x (2)

X=

x•(N)

A least squares solution to (12) is

01= (log a)(XTXX-1 [ZX (t) - X x(t)] (13)

for 1 = 1,..., L, where a = 9(L - 1). Substituting (13) into (11), we get

axT (X TX )-I &0~t=1 X(t

P EkW = a XT(XTX)-Z El(t)=k (t) (14)

Equation (13) and (14) are very easy to compute. Basically, we only
have to accumulate the matrix XTX and sum x(t) into different classes
1 = 1, ... , L. We can obtain probabilities PL(x) by a single inversion of
matrix XTX after a pass through the training data.

4 Relation to Other Work

The work reported here is very different from our previous work utilizing
neural nets for CSR. There, a single segmental neural network (SNN) is
used to model a complete phonetic segment [3]. Here, each HME estimates
the probability density for each state of a phonetic HMM. The work here
is more similar to that by Cohen et al. [4], the major difference being
that in [4], a single very large neural net is used to perform the probability
density modeling. The training of such a large network requires the use of
a specialized parallel processing machine, so that the training can be done
in a reasonable amount of time. By using the HME method and dividing
the problem into many smaller problems, we are able to perfonn the needed
training computation on regular workstations.
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to 7.1% respectively. We found out that the improvement could be made
larger for a hybrid HME/HMM by adjusting the context-dependent priors
with the context-independent priors, and then smooth context-dependent
models with a context-independent model.

More specifically, in a context-dependent HME model, we usually es-
timate the posterior probability phoneme 1, P(llc, x, s), given left or right
context c and the acoustic input x in a particular state s. Because the
samples may be sparse for many of context models, it is necessary to
regularize (smooth) context-dependent models with a context-independent
model, where there is much more data available. However, since the two
models have different priors: P(l1c, s) in a context-dependent model and
P(ls) in a context-independent model, a simple interpolation between the
two models which is P(l1c, x, s) = P(Xl,*c')P(lcS) in a context-dependentP(XPCl))
model and P(llx, s) P(,,Pt) in a context-independent model is in-

P(X S)-

consistent. To scale the context-dependent priors P(lIc, s) with a context-
independent prior P(ljs), we weighted each input data point X with the

weight . ) for a prior adjusting. After this modification, a context-P(l~c,a)

dependent HME actually estimates P(XIC'X)P(i S) It combines better with a
P(X a)

context-independent model. For the same experiment we showed in Table
1, the word error for the HME (with HMM) droped from 6.8% to 6.2%
when priors were modified. For this 5,000-word development set, we got
a total of about 20% word error reduction over the tied-mixture HMM
system using a HME-based neural network system.

We then switched our experiment domain from a 5,000-word to 40,000-
word the test set. During this year, the BYBLOS system has been im-
proved from a tied-mixture system to a continuous density system. We
also switched to using this new continuous density BYBLOS in our hybrid
HME/HMM system. The language model used here was a 40,000-word
trigram grammar. The result is shown in Table 2.

From Table 2, we see that there is about a 10% word error rate reduc-
tion over the continuous density HMM system by combining a context-
dependent HME system. Compared with the 20% improvement over the
tied-mixture system we made for the 5,000-word development set, the im-
provement over the continuous density system in this 40,000-word devel-
opment is less. This may be due to the big improvement of the HMM
system itself.
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The method of hierarchical mixtures of experts call be ased as a conlt1nouLS
density estimator to speech recogn1itionl. Exper-imental reCsLilts showed that
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Word Error Rate
HMM 7.8
SNN 8.5
HMM+SNN 7.1
HME 7.6
HME + HMM 6.8
Prior-modified HME + HMM 6.2

Table 1: Error Rates for the ARPA WSJ 5K Development Test, Trigram
Grammar

Word Error Rate
HMM 9.5
HME + HMM 8.7

Table 2: Error Rates for the ARPA WSJ 40K Test Set, Trigram Grammar
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2. SPEECH DATA AND NETWORK TRAINING

The system vocabulary of the SRS consists of the 10 German digits,
the word zwo, and 12 telephone command words. The speech signals

were limited to telephone bandwidth and sampled with 8kHz. From the-
se signals feature vectors were extracted every 12ms, each consisting of
12 cepstral coefficients derived fromn LPC paraireters. Additionally, a
parameter characterizing the short-time energy of the signal was used.

In the case of isolated words for the computing of the SRS parameters,
feature vectors from 100 utterances of each word spoken from different
speakers, were used. Speaker independent recognition rates were rneasu-
red on a set containing 100 utterances of each word from speakers not
included in the training set. For the case of connected digits, utterances
of 60 different speakers each containing 3 digits were used for training

and the utterances of 60 other speakers for testing.
In simulation experiments the network size and the parameters of the

truncated back-propagation through time [3] were optimized for telepho-
ne bandlimited speech recognition. The feature vectors were processed
in blocks of F vectors of dimension 12 in order to reduce the processing
time. For each block the activation of all neurons were updatet and thus
a vector of word scores was produced. After processing all blocks of fea-
ture vectors belonging to an utterance the word scores were accumulated
in order to generate a word hypothesis.

For RNN operating in this manner it was found that a fast and re-
liable weight training can be done by linearly decreasing the learning
parameter during 300 training epochs. Error back-propagation initiated
every 30 time steps and considering the 40 preceding time steps turned
out to be sufficient for learning of the relevant time dependences. More

details are given in [1].

3. EXPLORING THE RECOGNITION CAPACITY OF
RNN-SRS

3.1 Recognition of Isolated Words

In the case of isolated word recognition RNN were trained to estimate
word likelihoods for groups of F = 4 consecutive feature vectors. WVord
hypotheses were generated by accumulating the likelihood values during
the duration of an utterance. The RNN-SRS achieved a recognition rate
of R•2•=97. 1% for 23 words and R 1 =98.2% for the 11 digits. The RNN-
SRS outperforms SRS based on Discrete HMM (DHMM) or Continuous
HMM (CIIMM) using the same kind of features. SRS based on DHMM
which uses in addition to cepstral features Delta-Cep (DCep), repre-
senting dynamical information of the feature vectors explicitly, achieves
with R 23=97.3% about the same recognition rate as the RNN-SRS. This
indicates that RNN-SRS are able to exploit automatically the informa-
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]Ieble 1: BRecognition rates for isolated wo01ds (iRi 1), for st rings with
know~n mnriber of digits P1e D and foi- strinrgs withI unknown number

ofdigits ROCD

Rec~ognize R? ~ CD~ ['X1 R CD[%17j

RNN 971 95.9 92.1

DUHSAIM 95.8 92.5 84.9

C 11 AI N 96.3 9 ý93.8 84.5

hon about the dynamtic of the feature vectors.

3.2 FBeeogiiition of' Connected Digits

For rthe task of' recognizing connected digits with anl unknown number
of connected digits in an utterance the RNN-SRS was also trained to
estimate w,,ord likelihoods. A digit i in a digit string- is recognized if thle
con dit ion

Oi(0) > 0-h A Oi t + At) < 8, I> 2

is irue f0r t lie activity of thle correspo ordirl ig oItput neuron O. The thres-
bold Oh in~diceates the begin of a digit while e, indicates thle end. Via At
a ni on ein wvord tiuration constraint, is introduiced.

T-i >s' reconirtion experimrents were done wvith a RN N-SR S trained for
nco~izing' isolated vnorris. Only 19%~- of' the digbit strin rr were recoonized

ctir--ly. Tbe coriietnuess of thle single digits was 5.5X. Thle low recogiii-
lion 1 ~e,0compatred 10 98% obtainetd with digits spoken in isolation, is
die I o th bradi ically increased dvinamics of continuously spoken digits.

Ini f-iitber expetriments the network was trained woith feattire vectors cx-
tracte firim the digit strings, in order to adapt the network parameters

To r ios de riainics. Frfirterinore, an additional ouputl neuron for detec-
ýle rý(_ e oundary bheoeen two digis xi as added to the RNN-SRS. If

derivaton of lie civi iv ixof tfii neuro00 is multfilphie wvith the activi-
I e of the nieurons repi esenrtin the dig its the segimentation of the digit

1 in o ýsmore reliable. On the samie drat a aIs ae nDsrt
lix 4P1-M ) wvith i 5sae anrd 5 snbst rtes arid a SR.S based onl Con-

Iiiu ous Vt St S (CHit 5 x) xi ith 8 states arid five nixtuntis per state were,
opii.nleer rinoce 01c tovxaluate the iresults obtainedl wxithi a B NN-SR S.
BoR n1T t S bae(e! SRSo ate using in addition to cepstra features O)Ceps

T. a- ý;witim~c the speech sionals. Recognititon irites vvere measured for
mcoonutaio sks:~ recoonittio rof filie 11I digits ( Rti) wh ich are i-t-

te,~cc s isol med v-ot ds IecCOognit ion of strtings cout aininI a knoxxn
1ým)rof corn-ct er dig its ( ~eD)and i erognttionl Of S>triuo`s contat-
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Figure 1: Activities of selected output neurons

ning an unknown number of digits (RCD). As can be seen from Table
1 the RNN-SRS outperforms significantly the HMM based SRS for all
three recognition tasks. Especially, the rate for RCD is about 8% higher
than those of the HMM-SRS. This result is due to the high discrimina-
tive power which is in contrast to HMM inherent to RNN. Interestingly,
all investigated SRS, although trained with digit. strings, recognized the
isolated digit data base with an high accuracy of about 96%. This in-
dicates that isolated digit recognition is indeed a subtask of connected
digit recognition.

3.3 Extended Vocabulary Size

In order to evaluate the recognition capacity of the RNN-SRS the voca-
bulary size was extended to 53 by taking the 53 different digit strings as
word categories. A RNN was trained to classify these 53 different digit
strings. For the independent test data a recognition rate of about 92%
results. This is quite a high rate if it is considered that only 60 utterances
of each digit string were used for training. Important to note is that for
recognizing 53 words only 20 additional neurons are required compared
to the recognition of 23 words.

The experiment of recognizing the digit strings as words was also
used to analyze how the decision for a word category is done by the
RNN. One could suppose that the R.NN is unable to exploit the infor-
mation included in the feature vectors of the whole utterance so the word
discrimination is done on the basis of a small number of feature vectors
in the beginning or at the end of an utterance which are typical for a
word category. In Figure 1 the activities of three selected output neurons
are shown during the recognition of the string 0 - 3 - 2. As can be seen
the decision for the correct string occured during the utterance of the
last digit of the string. However, information occuring at different time
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instances in the feature sequence must have been exploited by the RNN

because otherwise the string, 5 - 9 - 2, ending with the same digit, as

0 - 3 - 2, could not have been rejected.

4. REDUCING THE COMPLEXITY OF THE RNN-SRS

4.1 Preprocessing

Using a neural network with universal approximation capabilities like

RNN the complexity of feature extraction can be drastically reduced.
For calculating P LPC-oriented cepstral features three computational
steps are performed. First, P + 1 values of the autocorrelation function
(ACF) are calculated, second, P predictor coefficients (LPC) are derived
by solving a system of linear equations defined by the ACF, and third, the
predictor coefficients are transformed into P cepstral coefficients (CEP)

by means of a recursion. Regarding the information content, the three
parameter sets, ACF, LPC, and CEP are equivalent. Unique transfor-

mations for converting one parameter set into another exists. Due to

the approximation capability of RNN it could be expected that the re-
cognition performance of the RNN-SRS obtained with CEP could also
be achieved using ACF as features. Corresponding simulation experi-

ments confirmed this statement. Without increasing the network size, a

RNN-SRS with ACF as features reached a recognition rate of 96% on
the test data. However, the direct use of ACF reduces the computational

load of the feature extraction only about 15%. Most of the computati-
ons arise from the calculation of the P + 1 ACF-values. At a frame size
of N samples per feature vector about (P + 1) * N multiply-adds for a
speech segment have to be performed which is 50% of the total compu-

tational complexity of the RNN-SRS. Nevertheless, the elimination of
the recursive algorithm is crucial for a monolithic hardware realization
of RNN-SRS.

The approach we investigated further for reducing the number of
computations is based on the assumption that bandlimited speech si-
gnals can be modelled by spherically invariant random processes [4].

In this case, the normalized ACF Vb(k) of a speech signal s(n) can
be calculated from the polarity-correlation function (PCF) p(k) =
E{sgn(s(n))sgn(n + k)) according to V)(k) = sin(!p(k)) [5]. The PCF

can be calculated without any multiplications or additions, simply by

counting. Two factors have to be considered in practical applications of

the PCF in a block oriented feature extraction. If finite segments are used
PCF can only be estimated and then also the stationarity assumption is
problematic. In first simulation experiments we trained a RNN-SRS on
the basis of PCF-values. On the training data we achieved with PCF as

features the same recognition rate, near 100%, as with ACF. On the test
data the recognition rate is with 94.1% about 2% below that obtained
with ACF. Further improvement can be expected by optimizing the va-
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lues of P and N. This indicates that in neural SRS it is indeed possible

to reduce the complexity of feature extraction significantly by using PCF
as features. Therefore, in SRS based on neural networks with universal
approximation capabilities features consisting of PCF-values allow to
realize a feature extraction with very low computational complexity. In
particular with RNN, which exploit the feature dynamics automatically,

a recognition performance results which can be achieved by HMM only
with a highly complex feature extraction.

4.2 Quantization of Network Parameters and Activity Values

In further simulation experiments we investigated whether the pararne-

ters and activities could be coded with a precision lower than the 32 bit
usually used. The feature vectors and the output activities were quanti-
zed linearly using 8 bitv whereas the input activities of the neurons were

quantized using 9 bit. It is investigated how an additional quantization of
the network weights effects the recognition performance. In Figure 2 the

distrihution of the network weights together with a gaussian distribution
fitted by the mean and the variance of the weights are shown. It can be

seen that the distribution is gaussian like which indicates that a non-

linear quantization procedure could be favourable. In order to evaluate

the results achieved with an optimum nonlinear quantizer a linear quan-
tizer was also investigated. As can be seen from Figure 3 with a linear

quantizer using 7 bit per weight value achieves the same performance as
a SRS using full precision of 32 bit, for each weight. Using the optimum
quantizer a precision of 5 bit is sufficient to achieve the same recognition

results. Even with a precision of 4 bit only a slight decrease in recogni-

tion performance occurs. Figure 4 shows the K codebook entries ci of
an optimum quantizer in comparison to those of a linear quantizer for
values of K = 16 and K = 32. As can be seen from Figure 4 using an

optimum quantizer small weight values are quantized more accurately
than with a linear quantizer. Especially, for small K the quantization
accuracy of the optimum quantizer is significantly higher than that of
the linear quantizer.

4.3 Hardware- Oriented Network Topology

The RNN in the reported experiments consist of about 250 neurons which
results in about 40000 connections. Actually, this amount of connecti-

ons prevent a VLSI realization realization of a RNN-SRS, in particular
an analog implementation. In order to take into account this hardware
constraint we introduce a new type of recurrent network, the so-called

Locally Recurrent Neural Network (LRNN). This is inspired by biolo-

gical neural networks in a sense that LRNN possess a layered structure
with sparse interconnection between the layers, and the neurons in the
hidden layer are only locally connected.
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Figuie 5: Connections of three exemplary neurons to their 2-nearest
neighbouirs

A LRNN consists of an input layer, a hidden layer, and an output
layer. The interactions hetween the input and the hidden layer as well as
hetween the hidden and the output, layer are unidirectional and sparse.
Thle hidden layer consists of recurrent neurons without selfloops arranged
in a 2 dimensional topology. The application of LRNN allows the defini-
tion of a regular structure which is suitahle for hardware realizations and
could not. he achieved hy unsupervised pruning m~ethods. Figure 5 shows
the hidden layer of a LRNN with 169 neurons placed on a 13 × 13 grid. A
neuron at position (ij3) is connected to its rn - 2 nearest neighhours, i.e.
to all neurons with indices ([i - 2, i + 23; [j - 2, j -t 2]). Neighhourhoods
are ending at the edges of the grid.

In simulation experirrents a LRNN with 60 input neurons, 169 hidden
neurons, and 23 output neurons was used for realizing noise immunized
SRS for the 23 word vocahulary. The neurons of the input and the output
layer are connected to only one fourth of the hidden neurons. As can
he seen from Tahle 2, a LRNN with connections to the nz - 5 nearest
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The. experiments concernedl withi aspects relevant for hardlware rea-
lizations have shown that the coiiiplexitv of' the RNN-SRS could he si-

gnificantly reduced. Conisidering the quatitization of the weight values,

7 bit. proved to he suffhcient if a linear quantizer is used. If an optimium
quantizer is ursed the quantization accuracy of the weight valuies could he
further lowered to 5 bit,. By introducing LRNN the amiounit of connec-
tions could be reduced by one half lin comparison to RAN wvithiout loss
in recognition performance. More important, LRNN avoid long distance
wires in a VLSI imiplemientation. The reported experiments show that.
LRNN with recurrent connections to the 5-nearest. neighbours in Ithe hInd-
den layer are able to ext~ract informiation relevant, for speech recognition
front noise contaminated speech arid thus achieve a robust recognition
p erfor-ma iice..

Currently, a cooperation with hardware expert~s started iii order to
realize the described LRNN-SRS on a siiigle chip. lit a first step, a LR,ýNN
will be limpleuiiented. In a second step, strategies will he explored t o allow
a systetin on chip design. In this context redlucirig the com putat ional coml-

pdexity of' the preprocessing is a crucial point.. Simulation experiments
have shown that. using PCF as feature vectors is a promising approach
for low con] plex preprocessiiig

This work is su1ppiorted by the Desc/isch Focsc/ian qsgemieinsc/(i ft in the
research progqramn ",5ystrni- und 5ch il angasicc/inik Jair hioch yradiqye Par-
ahlelccrorbOc',/ ny'"
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Abstract

Segmentation of speech into sub-word acoustic units using Neural Tree
Networks (NTNs) is presented. NTN is a hierarchical classifier that combines
the properties of both decision trees and feed-forward neural networks. The
number of sub-word acoustic units in a given speech segment may or may
not be known to tihe segmentation algorithm. Both these varieties of speech
segmentation problems are addressed. The performance of the speech seg-
mentation algorithm using NTN is compared to that obtained using Hidden
Markov models (HXMMs) and dynamic prograinmning-based approach proposed
elsewhere.

1 INTRODUCTION

There is a growing interest to design speech processing systems based on sub-
word acoustic umits. In speech recognition tasks involving large vocabularies,
the phone tic content of different vocabulary words may overlap substantially.
Therefore. most of the currently available speech recognition systems build
models for phonetic sub-word uniits, and thereafter liildh-up word models using
this inventory of sub-word models [1]. Sub-word modeling has found success

ill speaker recognition systems too [2, 3]. Language identification algorithms
may also rely on phonetic iilodeliing of a given language [4]. Hence, there
is a growing demand to design automatic speech segmentation algorithlis to

phonetically (or acoustically) segment the available speech corpora.

In the present study, Neural Tree Network (NTN)-based speech segumen-
tation algorithms will be presented. The performance will lie compared
against Hidden Markov model (HMM)-based ([1], Chap. 6) and dynamic
prorraminng-based [5] approaches. Although the NTNs are used in the cur-
rent experiments, the proposed algorithms are general enough to accommo-
date any other neural nietwork architecture.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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Figure 1: A (binary) neural tree network (NTN)

1.1 Neural Tree Network (NTN)

The neural tree network (NTN) [6] is a hierarchical classifier that combines

the properties of feed-forward neural networks and a decision tree type struc-

ture. The NTN uses a tree-structure of discriminating elements, with the
discriminants being implemented using artificial neurons. The neuron uses all

feature elements for the decision, hence the NTN is not constrained to per-
pendicular discriminant boundaries as are the standard decision trees. The

architecture of the NTN is determined during training, and hence the NTN
is self-organizing. This is in contrast to multi-layer perceptron (MLP) neural

networks, where the architecture must be specified prior to training. Figure 1

shows a binary NTN. A binary NTN is used for a two class classification
problem.

Recently, some modifications to the original NTN have been proposed
to facilitate the estimation of the posterior class probability given a data
vector. A Modified Neural Tree Network (MNTN) was introduced in [7].

Forward pruning technique was used while growing the tree. Since, the leaves

of the pruned tree are likely to have data from several classes, a "confidence"
measure is associated with each class. For illustration, if the leaf of a binary

classification NTN has No and N1 vectors corresponding to class-O and class-1

respectively, then the "confidence" of each class will be given as

No N1

-No+N l- No+N,(1)

The "confidence" measure in MNTN is equivalent to estimating the poste-

rior probability using Parzens-window method in the region defined by a leaf.

More recently, Continuous Density NTN (CDNTN) has been proposed [8],
wherein local parametric models (generally, mixture of gaussian) are created

for each class at every leaf of a NTN.
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word Hidden Markov model, with the Markovian states being replaced by the
NTNs [9]. For a tutorial on hybrid Neural network & Hidden Markov Inodel
systems, refer to [10].

Word model scoring

Consider the task of scoring the inodel A, given a sequence of observation

vectors 0 = {x 1 , ,xt, -", XT. Assume that the output of the SWNTNs
are normalized so as to yield probabilistic values [8]. The probabilistic output

bi of the SWNTN qi can then be interpreted as the a posterior probability
P(xt/qg, A) of the observation vector xt, at time t, given the model A and
SWNTN qi. The durational probability di can be argued to represent the

probability P(qi/A) of being in state qg, at time t, The observation probability
P(x,/A) of vector xt can then be written as:

P(xt/A) = P(xt/p, A)P(qi/A) = Z(bdi) (2)
i i

The above equation can be approximated by considering only the maxinuim
value within the summation,

P(xt/A) = mnax(bidi) (3)

If it can be assumed that the successive observations are independent, then
the joint probability of the sequence of events can be written as the product
of the probability of the individual events.

P(/A) = P(x X2, =x-,/A,) =iP(xj/A) (4)

j=l

Equation 4 gives the probability score of an observation sequence 0, given the
word model A. Equations 3 and 4 can be easily implemented using dynamic
programming techniques (Viterbi algorithm).

Iterative segmentation algorithm

The segmentation of each word is accomplished by using an iterative algo-
rithun. Given an initial word model A, the algorithm consists of two funda-
mental steps: (1) segmentation, and (2) re-estimation. The segmentation is
carried out by forced alignment using the standard Viterbi algorithm. The
optimal sequence of SWNTNs is decoded by backtracking the Viterbi path.

The new SWNTNs are now trained based on the new segmentation. Replac-
ing the old word model A by the new model A, the two steps are executed

iteratively until convergence is reached. The pseudo-code of the algorithm is
outlined in figure 3. The basic concepts underlying this iterative algorithm is
similar to the Segmental K-imeans algorithm used in Hidden Markov ilodeling
[112.
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NTN HMM Dynamic
prog.

boundary diff = 25msec 66.6 % 65.7 % 70.9 %
boundary diff = 20msec 56.4 % 54.6 % 61.2 %

Table 1: Speech segmentation coincidence rates

" A continuous density HMM tool-kit (Entropic Lab's HTK software) was
used to get the HMM-based segmentation. A whole-word model was
trained for each of the above five words, setting the number of states
equal to the number of phonemes present in them. Each state in the
HMMs was modeled by a single mixture, continuous density gaussian
distribution.

" The dynamic programming-based segmentation was obtained by deliver-
ing each of the forty utterances of a word, one at a time, to the algorithm
mentioned in section 2.1.3.

The speech was analyzed in 32 millisecond frames, with 6.25 millisecond
shift between consecutive frames. The spectral features used for the exper-
iments were 12th order linear prediction-derived cepstral coefficients. The
experimental results obtained are shown in table 1.

It is conjectured that since the dynamic programming-based segmentation
algorithm works on one utterance at a time (as opposed to NTN or HMM
-based approaches which use all the utterances of a word at one time), it does
not suffer from the deficiency of generalization to different pronunciations of a
word by different speakers. This appears to be the possible reason behind its
success over HMM and NTN techniques. A small experiment was conducted
to verify this conjecture. If the dynamic programming-based segmentation
is performed by delivering to the algorithm all the utterances of a word at
one time, the coincidence rate (for boundary difference = 20nisec) drops from
61.2% to 52.3 %.

2.3 Segmentation with unknown number of sub-
word units

Problem formulation : It is desired to segment given sequences of acoustic
observation vectors of a word into its constituent sub-word units. The seg-
mented sub-word regions have to be acoustically homogeneous. No linguistic
knowledge is assumed to be available, and hence the number of sub-word units
that would occur in the given word is also unknown.

2.3.1 Proposed algorithm using NTN

The algorithm was first introduced by the authors in [12]. The proposed
method can be thought of as being "self-evolving", in the sense that, it pro-
gressively segments the given word frames into constituent sub-word units.
one unit at a time, until all the frames are exhausted.
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To initiate the algorithin, the first N frames from each observation se-
quence are marked as the 'seed"franmes for sub-word segment Si. A NTN for
sub-word segment S is trained using these "seed"frames as class exeniplars.
The observation sequences are then classified (labeled) using the trained NTNs
to find the actual NI frames that get classified as "in-class". These fraines are
presumned to be truly belonging to the sub-word segment S1. It is conjectured
that the NTN shall generalize froom its training on the "seed" frames to clas-
sify all other similar vectors in the observation sequence as "in-class". The
training for the next sub-word segment S2 is similar to that outline above for
sub-word segment SI, except that its "seed"frames would now be the next N
frames beyond the previously estimated sub-word segment S, boundary. The
procedure is repeated until all the frames of the given observation sequence
are exhausted. The training procedure for a word consisting of two sub-word

segments is illustrated in figure 4.

The seginented waveforms obtained by running the above algorithim oil an
instance of word "backtrack" is shiown in figure 5. Only the first three sub-
word seginents are shown in the figure, and they depict reasonable acoustic

hornogeneity.

3 CONCLUSIONS

Automatic speech segmentation algorithmns using Neural Tree network (NTN)
were presented. Two different types of segmentation problelms were posed de-

pending on whether the nmmber of sub-word units present in the speech seg-
ment is known apriori or not. The proposed NTN-based algorithm performed
comparably to the HMM-based segmentation technique. Preliminary findings
are encouraging and the proposed approaches will be continued to be further
investigated.
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Abstract
Estimating motion in scenes containing multiple motions

remains a difficult problem for computer vision. Here we de-
scribe a novel recurrent network architecture which solves
this problem by simultaneously estimating motion and seg-
menting the scene. The network is comprised of locally con-
nected units which carry out simple calculations in parallel.
We present simulation results illustrating the successful mo-
tion estimation and rapid convergence of the network on real
image sequences.

1 Introduction

Motion estimation is an ill-posed problem. In other words, lo-

cal motion measurements are inherently ambiguous. When the

scene contains only one smoothly varying motion the ill posedness

can be overcome by imposing a smoothness constraint on the so-

lution (e.g. (Poggio et al., 1985)). The smoothness assumption,
however, is not valid when the scene contains multiple motions,

and imposing it leads to erroneous motion estimates especially

at occlusion boundaries (e.g. (Horn, 1986)). One way to modify

the smoothness assumption is to estimate motion discontinuities
via line processes and disable motion smoothing across the line

processes (Terzopoulos, 1986; Hutchinson et al., 1988). These al-

gorithms are notoriously slow to converge, and more importantly

they produce a representation which is ill suited for dealing with

scenes containing occlusion, such as a scene showing a cat walk-
ing behind a fence. Motion discontinuities can capture the fact

0-7803-2739-X,95 $4.00 © 1995 IEEE
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that the cat fragments and the fence posts are not moving to-
gether. but they can not capture the fact that the cat fragments

move together. In contrast, the representation we are interested
in computing explicitly groups the fragments together (WVang and
Adelson, 1994; Darrell and Pentland, 1991; Black and Anandan,
1993).

2 A-k1rchtecture

Our architecture is based on the "divide and conquer" modular-
ity principle (Jordan and Jacobs, 1994). Rather than have one
network estimate motion everywhere, we have multiple Totion

c'Veft subnetworks competing to explain the data by minimizing
Motion eronr. The error signal to these expert subnetworks is
controlled by a gaeting subnetwork which assigns different regions
of space to different experts. The advantage of this approach is
that it restores the validity of the smoothness assumption: regions
unldergoing drastically different motions are assigned to different
experts, and the motion of regions assigned to a specific expert is
indeed smoothly varying. The network simultaneously estimates
the motions and the assignments. The assignment is based on

factors: (1) which expert is currently doing a better job of ex-

plaining the motion data, and (2) the current assignment of nearby
regions having similar intensities. As shown below this simulta-
neous estimation and segmentation is accomplished using simple

parallel updates.
The architecture and flow of information are depicted schemat-

ically in figure 1. The motion expert subnetwork is comprised
of A sheets of retinotopicallx organized units (K represents the
inaumurn number of motions in the scene). Each sheet contains
units tuned for a specific velocity at a particular retinal location
(cf. (Bultbhoff et al., i989)). The distribution of responses of all
velocity tuned units at a given location represents the velocity
estimate of the motion expert. The input to the motion experts
cones from the motion error subnetwork, which also contains units
tuned for a specific velocity at a particular retinal location. The
exact form of these motion selective units is irrelevant, as long
as they represent the local deviation from coherent motion in a
given velocity. The calculation can be based on correlation as
in (Bulthoff 0t al.. 1989) or motion energy as in (Simoncelli et al.,
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Figure 1: A schematic depiction of the information flow in the network.
In accordance with the "divide and conquer" modularity principle, we
have multiple motion expert subnetworks competing to explain the data
by minimizing motion error. The error signal to the expert networks
is modulated by a gating subnetwork which assigns different regions of
space to different experts. The assignment is based on the motion error
of each expert's estimate as well as the current assignment of neighboring
regions with similar intensities. The simultaneous estimation of motion
and assignments is accomplished by retinotopically organized units which
carry out simple operations in parallel
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1991). The input from the motion error to a sheet in the motion

experts suhnetwork is modulated by a corresponding sheet in the
gating subnetwork. The gating subnetwork, in turn, receives input

from the experts and motion error subnetworks as well as a local

,aitonsity subnetwork which modulates the cooperation of nearby
gating network units.

3 Dynamics

We denote by Okp(i, j 1) the activity of a unit in the 14h sheet of
the motion experts network at grid location i,j tuned to velocity 1,
and -v E(i, j, 1) the activity of a unit in the motion error network.

Similarly, we denote by Gi(i, j) the activity of unit I, j in the klth
sheet of the gating network and by I(ij,) the activity of a unit
in the local intensity network. To emphasize the connection to
the EAI algorithm we call the dynamics of the gating and expert
networks the E and "11 dynamics respectively.

E dynamics The gating units are updated by a weighted sum-

mation of inputs followed by a normalizing noulinearity:

ij xp(Cp(i, 1))
ex) (p(C(i,j))

G,0.(ij) = 1/, 3 E(i,j, 1)0kj(.i 1) - /- 1 "'(•jG(oi7.) (2)

iI, dynamics Similarly the motion expert units are updated
I- a weighted summation of inputs followed by a normalizing non-

linearitv:

,) := C.])(Oo(i,j, 0))

ZCxp(Ok ii, jý0))(3
V ith:

Ok (i, 9' 1) i/,ii Ejvi W1 C(o. n)E(i, j. 1) (4)

Wlrco •aO"? is a Gaussian window and o,' is a Gaussian win-
.o.. lnonuhated by the local intensity network.
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4 Energy Function

The dynamics can be derived from the following energy function:

J(0, G;E) = w`nGk(mn,n)O0,i,jI)E(m,n,I) (5)

kijlmn

-n Z caJnGk(ij)Gk(m'n)
ijmnk

+/31 Z Gk(i,j) log Gk(i,j)
ijik

+ ý2 1: Ok(i, i, 1)lo0g Ok (i, J, 1)

To understand the justification for this energy function, consider
the expression:

Jij(Ok) - Ok(i,j, 1)E(i,j, l) (6)

Recall that E(i,j, 1) measures the motion error at location i,j and
hence the higher the motion error for a velocity the higher the
penalty for a unit with that preferred velocity to be active. Due
to the ill-posedness of the motion estimation problem, Jij(Ok) will
have multiple minima. Therefore a smoothness constraint may be
imposed via a larger integration window (as in (Lucas and Kanade,
1981)) :

Jii (0) = wi~jn Ok(Zi,j 1) E (n,n,l1) (7)

1 mn,n

But a large integration window is likely to contain multiple mo-
tions. Hence we gate the errors to the kth expert by Gk:

Jii(ok) ( wmT k(Tn, n)ok(,, I)E(T, n, 1) (8)
1 mn

This gives the first term of the energy function. The second
term reflects the fact that nearby points having similar intensi-
ties should be assigned to the same expert. Finally the last two
terms (the entropies) penalize for distributions where only one
unit is active: omitting these terms causes the softmin function
in equations 3 and 1 to be replaced by a "hard" winner take all
function.

It is easy to show that constrained minimization of the energy
function with respect to Ok(i,j, 1) gives the M dynamics. Minimiz-
ing the function with respect to Gk(ij) gives a slightly different
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Figure 2: A frame from a sequence presented to the network. The
sequence shows a person moving behind a plant.

version of the E dynamics with the term E(i, j, )Ok (i, j, 1) replaced
by the weighted average E(ij, 1) Y wf'Ok(mn, n, 1). Note. however
that the velocity fields of each expert are by construction smooth.
Hence, this sum is well approximated by the term E(i, j, 1)0k (i, j, 1)
and the E dynamics can be viewed as an approximate minimiza-
tion. In practice we have found that the approximate solution
works as well as the exact one.

5 S-_ntulat~ion Results

The performance of the network on a real image pair is illustrated
in figures 2 and 3. An important parameter in our network is the
number of velocity tuned units assumed to exist at every location,
i.e. the sampling used in discretizing velocity space. In the simu-
lations reported here, we assumed that the sampling is sufficiently
dense such that the distribution of unit activity approximates a
continuous function. As a measure of motion error we used the
gradient constraint (cf. (Horn, 1986)):

E(ij,) = (dx'V + dt) '  (9)

WVhere dx, dt denote the temporal and spatial derivatives at loca-
tion Zj respectively. Note that this expression is quadratic in V1.
Thus the term 0k(i,j, 1) in equation 4 is also quadratic in 1/1 and
equation 3 can be evaluated analytically.

Figure 2 shows one frame from a sequence showing a person
moving behind a plant. Figure 3 shows the activity in the network
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as a function of time. On the left is shown the activity in a sheet of

the gating subnetwork. The grey level represents the probability
that a pixel be assigned to one of the experts: white regions are
confidently assigned, black regions are confidently rejected and
grey regions can be equally assigned to both experts (these are
regions where there is no motion information). As can be seen,
the network converges rapidly to a correct motion estimate and
segmentation.

6 Discussion

The energy function in equation 5 is, of course, not the only pos-
sible one to use as a cost function for motion estimation and in-

tegration. In related work (Weiss and Adelson, 1994) we have
experimented with other cost functions. The common feature of

the various functions we have explored is that they contain the
following three terms:

"* a term measuring the local prediction error, i.e. how well
does the expert to whom this pixel is assigned predict the
local motion measurements.

"* a term rewarding coherence of the motion fields of each ex-
pert.

"* a term rewarding coherence of the assignments. i.e, reward-
ing assignments in which neighboring pixels of similar inten-
sities are assigned to the same expert.

It is the third term that differentiates our work from many
computer vision algorithms for motion segmentation. We believe
that the integration of form and motion cues for segmentation is
crucial. In our current work we are studying ways to improve this
integration by having perceptual organization cues, rather than

simple local intensity modulate the local interconnections in the
gating network.

A neural net model which also includes gating of motion en-

ergy units has been recently suggested by (Nowlan and Sejnowski,
1993). However, their model, unlike the one presented here, does
not compute segmentation or grouping. In their algorithm, the

gating units are trained off-line and essentially learn to suppress
measurements centered on motion boundaries.
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Figure 3: The activity of sheet one of the gating network G, (i, j) (left)
and the estimated flow (right) as a function of time, starting with random
initial conditions
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The network we have been using is closely related to the EM
algorithm for mixture estimation studied by (Jordan and Jacobs,
1994). The main difference is that in their mixture of experts net-

work the experts and the gating networks are assumed to be gener-
alized linear models. This serves to keep the number of parameters
estimated significantly smaller than the number of measurements.
Here we keep the large number of parameters to estimate (which
enables us to segment arbitrarily shaped regions) and add addi-
tional smoothness constraints on both the gating parameters and
the motion parameters. A second difference between our work and
that of Jordan and Jacobs is our emphasis on parallel implemen-
tation. Unlike the general mixture estimation problem, motion
segmentation has the feature that all measurements are typically
acquired simultaneously. One is tempted therefore to look for
algorithms that can be implemented in hardware by retinotopic
units performing simple operations in parallel. As our simulation
results show, units of this type can collectively produce rapid and
accurate motion estimation and segmentation.
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ABSTRACT

A new approach based on the extraction of maximum consistent
subsystems of linear systems is proposed for addressing the general
problem of determining the linear motion parameters of unknown
moving objects from a sequence of images. This type of task can be
tackled using simple but effective variants of the well-known per-
ceptron algorithm that aim at maximizing the number of patterns
that are correctly classified. Unlike in the usual perceptron applica-
tions, the weight vectors determined during the training phase are
not used to classify new patterns but to extract the structure and
to provide the parameters of the considered piecewise linear mo-
del. The potentialities of the new approach are demonstrated for
the segmentation of the optical flow. Experimental results obtained
for fields from synthetic and natural images indicate various advan-
tages of our approach with respect to some classical alternatives.

1. INTRODUCTION
The extraction and interpretation of the motion of the sensor and of indepen-
dently moving objects from visual information is a fundamental problem in
image processing and computer vision. Two classes of approaches have been
proposed in the literature: one is based on the computation and interpreta-
tion of the optical flow [1, 2, 3, 4] while the other extracts motion parameters
directly from the image sequences and leads to a layered representation of
object motions [5, 6]. The major problem of the first class of approaches is
how to combine local features in order to extract global object motions. Since
flow fields are usually noisy and partially incorrect, especially near occlusions
and motion boundaries, global approaches are considered necessary in order

'E. A. is partially supported by a Postdoctoral fellowship of the Swiss National Science

Foundation.
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dy(,, y) = 'U)4 + w5 + w6y (2)

for every image point (x, y).
Let, us assume that the optical flow has been estimated using a standard
technique [1], i.e. we have a couple of components (d.,(xk, Yk), rty(xk , y)) for n

image points (xk, yk) with k G {1, 2 .... , n}. The problem of the interpretation
of the optical flow arising from object motion is to segment the field into an
unknown number r of regions that correspond to the same affine motion and to
estimate the corresponding set of parameters wiv .... w1, where I {i, 2., r}C
Consider the linear system consisting of the a pairs of linear equations (2)
in the six variables wc .... w6 . For multiple motions and reliable optical flow
estimates, the overall system is inconsistent and the regions with the same
affine motion correspond to consistent subsystems. Formally, the optical flow
segmentation problem can be formulated as that of partitioning the system
of 2n equations (2) into r disjoint consistent subsystems and of finding a set

of corresponding solutions w1 ,....wc with I E 1, 2 ,r. Since all pairs of
points with the same affine motion should be associated to the same region,
one looks for maximum consistent subsystems, i.e. subsystems containing the
largest number of pairs of equations (2). In order to partition the image into
a small number of regions, a simple greedy strategy is adopted in which as

large as possible consistent subsystems are removed iteratively.

3. PERCEPTRON-LIKE ALGORITHMS AND OPTICAL FLOW

SEGMENTATION

A perceplron is a simple linear threshold unit whose output

= 1 ifLt=cwjxj >O0
-1 otherwise,

where xj C R denotes the jth input and wj (E 9I the jth weight. Given a task,

i.e. a set of p input vectors at., 1 < k < p, and the corresponding desired
output bk G {-1, 1}, the objective of lraainag is to find a weight vector w
that classifies all ak as well as possible. This amounts to finding a w that
satisfies as well as possible the following linear system:

akw > 0 Vk such that b k 1
ak w < 0 Vk such that b1k = -1. (3)

If the task is linearly separable, the well-known perceptron algorithm [14] is
guaranteed to yield in finite time a weight vector that correctly classifies all

ak. The procedure is very simple: start with an arbitrary initial vector w 0 ,
randomly select, a sequence of input vectors ak and, at each iteration, update

the current vector wi as follows:

f wi + ip bkad if ak is misclassified by wi

wi otherwise,
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wvhere q: is the gain parameter. In fact, when (3) admits a solution, it can

be1 find in polynomial time using an appropriate method for linear program-

riong [151. tn the frequent case where the task is not linearly separable, the
best we can ask for is an opltiaal weight vector which correctly classifies as

1ni1> inputx vectors as possible. As we have shown in [16, 17]. finding an

optinmal solution turns out to be harder than finding a soluttion of (3) when it,
exists. More precisely, the problemn is A`P-hard and cannot be approximated

in polynaoiial time within every constant factor.
Since the perceptrton algorithm never converges for nonlinearly separable

aýsks. several variants have been proposed and studied for finding optimal
w, ight vectors [8, 9]. In terms of linear syst ems, these methods aim at fin-
ding maxinium consistent subsystems of the associated system (3).

The basic idea of the t hermal perceptron algorithm [8] is to favor weight

updjtxes that aim at correcting errors whose total input uV = tdakw is rela-

tiveiv close to zero. Indched, since u is proportional to the distance froom the
input to the hyperplane H = {x C ')'I" wx C} ldefined by the current, v,

the large weight chan ges that would be required to correct errors with a large
a are likely t~o corrupt, other well classified at . Therefore, the magnitude of'

the xw-eigiht modifications decreases exponentially with lve'. Specifically. the

yain parameter in (4) is taken as

?) = I exp lul (.5)

v:here the it nipercahire I linearly decreases froim an initial value I0 to 0 In a
numbee of cycles C'max through the task. This is achieved bv setting at

the beginning of the ctli cycle t : to with t - c/C'max. The annealinig
process allows to stabilize the weight vector over any given training period.
As s own in [8, 9], the choice of' ai initial temperature to aind of' the specific

annea cli > schedule has a strong Impact on tie quality of the solutions. In

parleicular. fastecr decreasing schemes provide coanparable results more rapidly.

-A,) variant of the perceptron algorithim caii ie easily adapted to the optical

segjnitaition probhlem. Ta cope with noise in the optical floa' estimate.

t~Hc origjial s~st~en- (2) of 2n equations is replaced by tile followxiig system of
I rnequalities:

'it , - ite'-11 -+-~ U)in > Xl k- , Ykk C

-W,.] i - 1, 1 % /. W3,, > -dj(Irk., Y-) - c (6

W4- ý1!'5d1 + >' d, (X k§ (e Yk )
- .)-? ,. , > ~dj5 (xi~f C

xv,, er k { 1, 2. . } cad c > 0 corresponds t o the, maximum acceptahle
err,,or.

,_s tentioned in secition 2, the idea of the approach is to extract from (6)

close-tlo-inax Luniun coiisistent subsysdtems iterativelv. Therefore, starting witlh
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an arbitrary initial solution w 0 C W'i, an image point (Xk, Yk) is chosen ran-
domly, the corresponding set of inequalities (6) is considered and the error
of the current solution wi is evaluated with respect, to each one of the four
inequalities. In this case, the error is defined as the difference between the
right and the left hand side terrns. For each violated inequality, the current
solution wi is then updated as in the tbermal perceptron:

Wi-I 1 :7- Wi + - exP (-EIJ'!/1) (7)

where E• denotes the error and at. is the coefficient vector of the inequality at
hand. The next cycle is started when all image points have been considered
in random order.
Eliminating a close-to-maximum consistent subsystem and iterating the pro-
cedlire until the remaining subsystem is consistent yields a partition of the
image into a set of regions corresponding to different motions. Although
this simple greedy strategy turns out very effective experimentally, it is not.
guaranteed to lead in polynomial time to partitions containing a minimum
number of consistent subsystems. Indeed, we proved that this minimum
cardinality partition problem [18] and the lmaximnum consistent subsystem
one [16, 17] are KR-hard as well as hard to approximate. Therefore the best
we can do is to devise fast heuristic methods with good average-case behavior.
In fact, it, is easily verified that even if maximum consistent subsystems were
available at each step, our greedy strategy would not be guaranteed to yield
minimum partitions [18]. Nevertheless, the idea of breaking down the overall
partition problem into that of determining a sequence of maximum consistent
subsystems is particularly attractive in a setting, like image processing, where
the ultimate goal is to achieve real-time computation. This is especially true
since, in spite of the inherent worst-case complexity of finding maxinmum con-
sistent subsystems, the thermal variants of the perceptron algorithm exhibit
a good experimental behavior [8, 9, 19].
Finally, it is worth noting that, unlike in the usual perceptron applications,
the weight vectors determined during the training phase are not used to
classify new patterns. Instead, they allow to extract the structure and they

provide the parameters of the piecewise linear model of object, motion.

4. COMPARISONS WITH OTHER APPROACHES

In order to evaluate the potentialities, properties and limitations of the pro-

posed approach it is worth comparing it with some other ones that have been
used till now to tackle the same problem. Only some key points are recalled
and a complete analysis has to be omitted for lack of space.
Robust regression analysis is an imi)ortant statistical tool frequently emplo-
yed in computer vision for motion analysis [11, 10]. These least square based
methods achieve optimum results when the data error distribution is Gaus-
sian. However, they become unreliable if the noise has non-zero mean compo-
nents and if outliers are present in the data. Outliers are usually considered
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as large measurements errors or impulse noise corrupting the data. In reality,
if we consider the object motion estimation problem the definition of outliers
is too restrictive since all motion data that do not belong to the dominant
motion should be considered as outliers. The breakdown point of a regression
method is the smallest amount of the outlier contamination that may force
the value of the estimate outside an arbitrary range. Many robust regression
methods have been proposed in the literature [11, 10]. The highest breakdown
point of 0.5 is reached by some methods such as the repeated-median and the
least median of squares. The complexity of those methods is very high, respe-
ctively of the order of O(nP logp n) and Q(n(P+i) log n), where p is the number
of parameters of the regression and n is the number of data elements.
In the optical flow segmentation problem, it cannot be guaranteed a priori
that more that 50% of the data belongs to the same coherent parameter
model. Therefore, the data needs to be partitioned before applying robust
regression techniques for parameter estimation. Many measures have been
proposed for the space partitioning of image features or optical flow data.
Statistical confidence measures on the optical flow discontinuities, on the gray
level discontinuities, on the position of the foci of expansion [4, 3] have been
used to generate hypothesis on object motion structure. The clustering of the
data into disjoint or fuzzy sets is then generally based on minimizing distance
measures among the data and the cluster centroids. However, in most of
these methods the number of regions in the partition has to be guessed in
advance and all of them have a high degree of complexity. For instance, the
k-medoids-like algorithms are characterized by an O(nk) complexity, where
n is the number of data elements and k is predetermined the number of
clusters [20].
Among the above-mentioned methods, only the Hough Transform [13] (HT)
can, in principle, solve the multiple object motion problem without limitations
or heuristic hypothesis on the data structure [12]. But in most applications
the HT requires a prohibitive amount of time and space in order to reach a
good accuracy.

5. EXPERIMENTAL RESULTS

A number of experiments have been carried out with optical flows generated
synthetically and extracted from natural images. Figure 1 reports a synthe-
tic affine optical flow that contains five consistent subsystems of the same
dimension. The correct segmentation is shown in figure 2. The parameter
values have been generated randomly with some constraints in order to yield
realistic values of the flow vectors. Subsystems of the same size have been
chosen to test the algorithm in the most critical conditions. Note that no
robust regression algorithm can cope with this data unless it is preceeded
by a preliminary and, in most cases, problematic clustering stage. Results
for subsystems with different dimensions show similar behaviors but faster
convergence. Figure 3 shows the same flow structure with the addition of
pseudo-random gaussian noise with a variance of about 20% of the average
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Fig~ure 1. Flow field composed by Figure 2: Segmentation of the field

fivesvilieically geiierated afline into the consistent, suhsysten-m. Each
transformations. gray level corresponds to a consistent,

subsystemi

Figure 3: Flow field composed by Fiue4 eaentatron of the iio-

five svaeia~ -nrated affine isv field into cons'stent suhsx stems.

transfort-ations and stiperunposed Each gray level corresponds to a con-

additive g-aussian noiseI. Si'trent Sriss i
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I _ W1 W2 W3 W4  w 5  w6

Par. subs. 1 0.020 0.209 -0.394 -1.828 -0.1255 -0.1165
Estimate 0.0203 0.2094 -0.3938 -1.8277 -0.1254 -0.1166
Noisy est. 0.2543 0.3096 -0.2717 -1.6239 -0.1122 0.0974

Par. subs.2 0.734 -0.473 0.0155 0.29 0.441 0.368
Estimate 0.7342 -0.4729 0.0154 0.2897 0.4409 0.3681
Noisy est. 0.7491 -0.4888 0.0145 0.4718 0.4129 0.3857

Par. subs.3 0.2740 0.283 -0.017 -0.0440 -0.2525 -0.3445
Estimate 0.2739 0.2832 -0.0169 -0.0437 -0.2525 -0.3447
Noisy est. 0.2784 0.2786 -0.0441 0.0015 -0.2576 -0.3363

Table 1: True and estimated parameters for three affine transformations of
Figures 2 and 4.

data dynamic. The segmentation result is reported in figure 4. Table 1 pro-
vides an example of true and estimated parameters in both noisy and non
noisy cases. For optical flows without noise, the thermal perceptron algorithm
determines the exact segmentation as well as the true motion parameters in
less than 300 cycles through all image points. In the case of noisy flows, the
relevant structure of the segmentation is detected but some small consistent
subsystems appear due to noisy vectors. However, the parameter estimation
of the dominant systems remains quite accurate and the spurious subsystems
can be easily identified based on their (small) size or poor spatial coherence.
In fact, the corresponding noisy vectors could even be corrected by performing
an additional optical flow estimation according to the spatial consistency of
the current partition.
The results obtained for natural images and presented elsewhere [18], are
similar to those for noisy synthetic flows. Indeed, the algorithm can estimate
in a very small number of operations (compared to classical approaches),
the number of moving objects, their motion parameters and their spatial
structure.
Given its computational requirements and performance, our approach fits par-
ticularly well into the layered motion representation scheme described in [7]
and allows to circumvent the "a priori" clustering problem without facing the
structural limitation of classical estimation techniques.

6. CONCLUSION

A new approach based on the extraction of maximum consistent subsystems
of linear systems has been proposed for the analysis and parameterization of
motion. Simple variants of the perceptron algorithm can be used to tackle
the general problem of determining the linear motion parameters of moving
objects from image sequences. Unlike in the usual perceptron applications,
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the goal of the training process is not to generalize to new patterns, but to
determine as large as possible consistent subsets of known data (image po-
ints) and then to interpret the resulting weight vector components as the
motion parameters of the corresponding regions. The experimental results
obtained for motion fields generated synthetically and extracted from natural
images indicate that our approach allows to overcome some intrinsic limita-
tions of other classical alternatives and compares very favorably in terms of
complexity and performance.
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A MULTIPLE SCALE NEURAL SYSTEM FOR
BOUNDARY AND SURFACE REPRESENTATION

OF SAR DATA

Stephen Grossberg1 , Ennio Mingolla2 ,
and James Williamson 3

Department of Cognitive and Neural Systems and Center for Adaptive
Systems, Boston University, 111 Cunmington Street, Boston, MA 022154

1 INTRODUCTION

A neural network model of boundary segmentation and surface representation
is developed to process images containing range data gathered by a synthetic
aperture radar (SAR) sensor. Synthetic aperture radar sensors can produce
range imagery of high spatial resolution under difficult weather conditions
(Munsen, O'Brien, and Jenkins, 1983; Munsen and Visentin, 1989) but the
image data presents some difficulties for interpretation by human observers or
automatic recognition systems. Among these difficulties is the large dynamic
range (five orders of magnitude) of the sensor signal, which requires some type
of nonlinear compression merely for an image to be represented and viewed
on a typical computer monitor. Another problem is image speckle, which is
generated by coherent processing of radar signals, and has characteristics of
random multiplicative noise.

To date, many approaches for speckle suppression have relied on simple
statistical models for the signal and the noise which are insufficient for ac-
curately representing natural scenes. Processing based on these models has
thus tended to suppress the signal as well as the speckles (Lee, 1983). Other
approaches have used the iterative application, within a small window, of non-
linear filtering techniques which aim to preserve the signal while smoothing
speckle noise. Our approach capitalizes instead on the form-sensitive oper-
ations of a neural network model in order to detect and enhance structure
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Fi--Lare !: Left: Nonlin•early comnpressed SAR imfage of New York State Thruway.
Rght: Multiple scale 13C.S!FCS oitpultý

hased on inforinat~ion over large, variably sized and variably sh~aped regions of
the linage. I particular, the nnu1i-scale iPienentatioil of the neural model

rep~ortedl here is cap~able of exploiting and combining information from several
iiested neighborhoods of a given image location to determ-ine the final inten-

st aLeto be, disp layed for that p'xed. By "neighborhood" is here meant a
region whose forin varie-s as a function of nearby image data, not some fixed
weigated) radial ftiction -for all pixel locations.

Our approach is ithistrated in Figure 1. Figure ! (left) show.s a 400x400
paxel SAR inmage. T1he image was obtained using a 35-Gl~z synthetic aper-
tutre radar witla I ft b-, 1 ft resolution and a slant ran~ge. of 7 kin (Novah,
Burl. Clianev, and O rk,1990). The image is frorn upstate New "York, of

a Eig!ay wit d, big overpass. The original 512x512 prixe image w-as re-

dfaced via gIrav-level consofidation to 400x400 pixels before processing, and
Fg.as 1:onlinefarly compressed via the funotion f(I) = 1/(2000 N I) for display-
Rig:. Figulre ! (righti) sb/os the multiple-scaue output of tile BS/.CS system.

bhe BseSoFCS aftii ornati call compresses thei image intensities and sriootns
over inage specIle walae preserving i pfor eiative structures.

Bourndary and surcaIace processing are herein accomplished by af improved

Boeiighbary Contour System (BCS) and Feature Contour System (FCS), re-
sit'valne tloa be displayen derived from analtses of perceptuah and neurobeo-
logical data. BCS/fCS rocessinig makes structures sucia as tnotor veficles,

roads, ad) buildiags moref salient and interpretable to huean observers than

thee- are inthe originpa! imagery. The neural network nmode! used here is
s nm -arized is ill.statedin Figu emnt of the Boundary Contour System
(BCiS) for boudary segininaewtatio b that s developed by Grossberg and Min-
golla (1985a, and51), Oir7) and 1He Teature Contour System (FCS) for surface
epresdvtatron that conas developed by Coheot and Grossbere (1984) and Gross-

ber and. Todorovm s ( vi88) through an acalysis of biological vision. Several
of these. unproveyaents ufere introduced in Cruthirds he a!. (l992). Taken to-

3 1o(t



Single-Scale BCS/FCS Model

Stage 6: Bipole Cells
long-range cooperation

SStage 5: Hyperoomplex Cells_ Stage 7: Feedback
orientational competitton = E orientational compeution

eStage 8: Feedbacksptiage 4: Hpertompe Cells • spatial competition

Stage~ ~ ~ paa 9:comSagp3eCmpexCel

Diffumoio
Between
Boundazies

ON Cells 0 tg :Sml z~

OFF Cells

Stage 1: ON Cells tage : OFF Cells

Figure 2: A single scale of processing in the BCS/FCS model.

gether, the BCS and FCS form part of the FACADE theory of biological and
machine vision (Grossberg, 1994), so called because the acronym FACADE
stands for the representations of Form-And-Color-And-DEpth that are sug-
gested to occur at the final FCS surface representations of the full binocular
theory. In the present work, only monocular, or single detector, processing is
described, so the model is considerably simpler than its binocular version.

Early processing by ON cells and OFF cells embedded in shunting center-
surround network models preprocessing by lateral geniculate nucleus (LGN).
Such preprocessing compensates for illumination gradients, normalizes input
dynamic range, and extracts local ratio contrasts. ON cell and OFF cell
outputs are combined in the BCS to detect, regularize, and complete coherent
boundary representations, while suppressing image noise, using multiple-scale
filtering and cooperative-competitive feedback interactions. Multiple copies
of the BCS are defined, each corresponding to a different receptive field size.
Each BCS copy inputs to a corresponding copy of the FCS at which filling-in
of a surface representation occurs.

Boundary segmentation is performed by three copies of the BCS at small,
medium, and large filter scales, whose subsequent interaction distances co-
vary with the size of the filter. Filling-in of multiple surface representations
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reponi Ao or ientecd 1 1 inoance edges. Attot hc role is to intitate

1- ~ ~~~~ a' I~,, 5cald c mc! cm/iny 5, vh Aelty ltoonclariea Pfe.a loion ed that
a J1ý ý end at orient ations perpettdictilar or o'bliqune to the orient ation of

- .A sl 'Coint ro. 19S7 Grossberg cod Ahiogolla, 19085b).
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Figure 3: Row 1: Stage I difference of ON and OFF cell processing at three
scales. Row 2: Stage 3 complex cell processing at three scales. Intensity of each
pixel depicts the total activity of the oriented complex cells at that position. Row 3:
Stage 5 hypercomplex cell processing at three spatial scales. Intensity of each pixel
depicts the total activity of the cells at that position. Row 4: Stage 9 processing
result at three different scales on example image. A linear combination of these
images is used to obtain the final multiple-scale output in Figure 1 (right).
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such boundary-gated diffusion is a form-sensitive computation that adapts to
each unique combination of image inputs, rather than a correlation derived
through a fixed kernel.

The ON and OFF signals may or may not be combined to generate the
final FCS surface representation. There are several related ways to do this
that all lead to essentially equivalent results. See Grossberg, Mingolla, and
Williamson (1995) for a more complete description. The basic idea in all cases
is to combine FCS surface measures that depend upon both the ratio contrasts
and the averaged background luminances of the image. To achieve this, thc
OFF responses are subtracted from the ON responses, either before or after
the filling-in stage. This strategy was introduced in Grossberg (1987b) and
has been applied in several studies since; e.g., Grossberg (1994), Grossberg
and Wyse (1991), Neumann (1993), and Pessoa, Mingolla, and Neumann
(1995). Such a subtraction of OFF (off-center on-surround) signals from ON
(on-center off-surround) signal cells is said to create double opponent cells,
since it combines two successive competitive (or opponent) interactions.

In perhaps the simplest double opponent computation, that of Grossberg
and Wyse (1991), the OFF cells have a higher tonic, or baseline, activity
than do the ON cells. When the OFF cell responses are subtracted from
the ON cell responses, there are two terms: one is sensitive to ratio contrast
and the other, which arises from the asymmetric baseline activities, increases
as a function of a low-pass nonlinearly-compressed luminance estimate. The
net double opponent signal diffuses across an FCS filling-in domain, or FIDO.
Alternatively, the ON and OFF inputs could first diffuse within their own ON
and OFF FIDOs, each gated by the same boundary segmentation, before the
net ON-minus-OFF double-opponent response is computed. The net filled-in
signal is shown at three scales in Figure 3 (row 4).

3 COMPARISON TO PRIOR METHODS

The BCS/FCS results are now compared to previously published methods for
speckle noise reduction. The alternative methods considered are: smoothing
with a median filter (Scollar, Weidner, and Huang, 1984), adaptive averaging
with a sigma filter (Lee, 1983), and smoothing with a geometric filter (Crim-
mins, 1985). The parameters of these methods are set to obtain a similar
net amount of smoothing-as determined by informal observation-as the
BCS/FCS, in order to evaluate how well they remove noise while retaining
actual image features with respect to the BCS/FCS.

Because it tends to ignore outliers, the median filter is a sensible method
for reducing speckle noise (Scollar el al., 1984). A 3x3 median filter was ap-
plied for 3 iterations. Alternatively, averaging with a mean filter blurs real
edges too much. This problem is addressed with the sigma filter, which only
averages those pixels with intensity within two standard deviations of the
center pixel. However, this approach leaves many outliers, which are due
to speckle noise, untouched. This problem is addressed by locally averaging
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Figure 4: Comparison of speckle noise reduction methods. (a) Top Left: SAR
image of scene with overpass over New York State Thruway, taken from image in
Figure 1. (b) Top Right: Multi-scale BCS/FCS. (c) Bottom Left: 3 iterations of
3x3 median filter. (d) Bottom Middle: Adaptive averaging using 2 iterations of 5x5
sigma filter. (e) Bottom Right: 3 iterations of geometric filter.

those pixels for which K or fewer other pixels in the averaging window lie
within two standard deviations (Lee, 1983). Adaptive averaging was done for
2 iterations, using a 5x5 sigma filter, with the standard deviation estimated
at a relatively flat image region, and with a threshold of K = 3 for removing
spot noise. Another method for speckle noise reduction, the geometric filter,
was also used. The geometric filter iteratively enforces a minimum constraint
for curvature, in pixel intensity space, between neighboring pixels (Crimmins,
1985). Each iteration of the geometric filter involves two successive applica-
tions of four nearest-neighbor intensity curvature rules, in four directions 45
degrees apart, horizontally, diagonally, vertically, and diagonally. The first
application reduces the curvature from above, filling in holes or narrow val-
leys. The second application reduces curvature from below, reducing spikes
or narrow ridges.

Figure 4 (top left) shows a section of the image from Figure 1, following
nonlinear compression of signal values, used as input to the noise reduction
methods. This image contains an overpass of the New York State Thruway.
Note that the detail of the overpass guardrails is maintained by the BCS/FCS
(top right), while speckled but homogeneous regions are smoothed over. The
median filter method (bottom left) and adaptive averaging method (bottom
middle) do not do as well at maintaining important detail while smoothing
away noise. The geometric filter after 3 iterations (bottom right), also does a
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good job at smoothing noise while maintaining detail. An important consid-
eration in evaluating the alternative approaches is that the BCS/FCS reliably
produces a result like that shown in Figure 4 as a final, equilibrium solution.
The geometric filter, however, iteratively smooths the image. Therefore, with
a geometric filter the user must choose how many iterations to use to achieve
the desired level of smoothness for a given set of imagery.
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A Neural Network Approach to Face/Palm
Recognition*

S. Y. Kung Shang-Hung Lin Ming Fang
Princeton University Siemens, SCR

Abstract

This paper proposes a face/palm recognition system based on decision-
based neural networks (DBNN)[5]. The face recognition system con-
sists of three modules. First, The face detector finds the location of
a human face in an image. The eye localizer determines the positions
of both eyes in order to generate meaningful feature vectors. The fa-
cial region proposed contains eyebrows, eyes, and nose, but excluding

mouth. (Eye-glasses will be permissible.) Lastly, the third module
is a face recognizer. The DBNN can be effectively applied to all the
three modules. It adopts a hierarchical network structures with nonlin-
ear basis functions and a competitive credit-assignment scheme. The
paper demonstrates its successful application to face recognition appli-

cations on both the public (FERET) and in-house (SCR) databases.
In terms of speed, given the extracted features, the training phase for
100-200 persons would take less than one hour on Sparcl0. The whole
recognition process (including eye localization, feature extraction, and

classification using DBNN) may consume only a fraction of a second

on Sparcl0. As to be elaborated in Section 4, experiments on three
different databases all demonstrated high recognition accuracies. Nev-

ertheless, particularly for improving false acceptance/rejection, a new
variant of DBNN is proposed in a accompanied paper [6]. Finally, our
preliminary study also confirms that a similar DBNN recognizer can

effectively recognize palms, which could potentially offer a much more
reliable biometric feature.

1 Introduction

With its emerging applications in security, financial transactions and many
others, biometric recognition systems (e.g. face, palm, finger print) have re-
cently taken on a new importance. There are many challenges in order to

*This research was supported in part by the Electronic Eye Program. This work is
based upon a closely related works of an earlier SCR face recognition system collaborated
with Drs. S.P. Liou and J.S. Taur[13]. The authors also wish to acknowledge the invaluable
contributions by Drs. L.J. Lin and I. Chakravarty of SCR.
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et th Enlicataon reonirements. Most features, either artificial or biomet-
i-c have major fla-s. Some (e.g. signatures or retinal patterns) are hard

to scan and a a cognze in real time, some (e.g. PIN numbers or pass-

.rrrds) ma; be stolen or forgot, and almost all artificially ID features can

b rier entlal!' forged. V'Ali h technological advance on microelectronic and vi-

sulaizaeron high performance automatic techniques on biometric recognition

a-- nov becoming economically feasible.

Th reader is referred to [11] and references therein for a more complete

surePy of previous research works on face recognition. Very briefly, in the

tonrign wohrk by Kelly[7], various kinds of facial features were examined.

i. include wIdth of head, distance between eyes, top of head to eyes,

-z-1 evea and nose and the distance from eye to mouth. Several promising

statistical approaches hve. been proposed: for examples, XL Transform[12],

[14fi], and eiVLnFaces[!] techniques. The eigenface approach has a large

oataI-se, cith 7562 images for about 3000 persons. It used 12 eigervectors
proe-css-tfrom 123 random selected images. In a test set of 200 images, 95%

rcmn" t4on rate was rearced. However, the performance severely degraded

S 2larr var iations in lighting (90 %), orientation(85 %), and size (64 %)
weep-zsent.

eura! networks hver showrn convincing applicability for face recognition
--aca a-pp-1,eatGions, e.g. gander[3,[J-10, facial expression class] ficat! on [2.

-ic, to Cconstru:ctU a neural network model is crucial for successful recognition.

te examples t yamic Link Architecture[9] uses Gabor wravelets as fea-
tues>nether is the Cresceptron[4], which is a multi-resolution pyramid

si -a7u to the classic Pukushima's Neocognritron. The present pa-

per n-croses a iace/palm recognition system based on decision-based neural
-o. -)(s o [13]). A modified probabilistic DBiNi'Ni (v,ith im-

oe erlonrance) s reported in another publication La.

£ n on�o ra>grx�oicr The main issues include face isolation, eye boea-

10-. reco-- *t'or accuracy (including false acceptance/rejection) and finally

s--stem e-pnndability. The overall configuration of the proposed face recogni-

jcr sis s depicted in Figure 1. The image acquisition hardware consists
o E CCD camera an• a digitizer board. Followring CCD imaging, there are

t•... .. digital processing modules: face detector, eye localizer• and face rec-

csier. .T.. DBNN arc used for each of these three modules.) Given a

rc- Or cor image, the DBNN-based face detector determines whether
, C n'sts a human face in the image. If thei- is one (i.e., the confidence_ (i ... e, - the

stc,_e o- '•. c-disc-iminant function value of the wvinner, is high), the DBNY-

bascar e ocauzern is activated to locate the exact locations of both eyes. A

rocCoespond;ng to the face region will then be extracted from the
- �-rre- no7 alizaIo of the facial size and illumination, and
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adjustment of the facial orientation, a vector of facial features can then be
obtained. Finally, the feature vector is fed into a face recognizer to either
recognize the person or reject him as a stranger.

Face Detection Both static or temporal techniques have been considered
for face detection. For still-image systems, static (e.g. template matching)
technique appears suitable. On the other hand, temporal based processing
would be powerful in video-based face recognition systems. The results re-
ported in the sequel are based on the static approach. For training the face

detector, the face pattern is normalized (affine transformed) so that the dis-
tance between both eyes remains constant and both eyes are on a horizontal
line. Each face/non-face pattern is further processed into a sobel edge map
of size 16 by 16 pixels, and this sobel edge map is the inputs to the DBNN-
based face detector. To detect a face in an input image, each of the possible
subimages is processed to see if it represents as a face. The face location
basically corresponds to the location of the subimage which is considered a
face pattern.

Defining Facial Region One crucial step of facial feature extraction is
to isolate a most reliable facial region from a given 256x256 image. Our
study shows that eyes, nose, and mouth each individually provided 20-30
% confidence; nose/mouth or eyes/mouth combinations raise confidence to
60+ %, while the eyes/nose/mouth reaches 90+ % confidence. Still a facial
region consisting of eyes and nose (excluding mouth) can yield even highest
confidence. So our facial region - containing eyes, eye brows, and nose -
can provide distinctive facial features and yet offer relative stability against
different facial expressions, hair styles, and mouth movement.

Eye Localization After the face detection phase, an eye localizer is ap-
plied to a (grey-scale or color) face image to locate the left and right eyes.
This is a key feature of our approach, since the eye positions provide a very
effective means to normalize the face size and reorient the face image. The
pattern resolution used for eyes is much higher than that used for faces. Both
conventional and DBNN based techniques have been developed:

e The eye location algorithm described in [8] may be adopted to extract
the location of left and right eyes from a grey-scale facial image. By
exploiting dense horizontal structure (specially pertaining to eyes) the
more exact locations of eyes can be determined. Since it does not incur
the usage of eye template, so even when eyes are closed ( relative posi-
tion of two eyes lead to eye-nose region Some special features of our eye
localizer are as follows. It can detect eyes even when they are closed.
It is insensitive to small change of the head size and face orientation as
well as the shapes of the eyes. The resultant facial region (containing
eyebrows, eyes, and nose) is depicted in Figure 1.
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are not required. The objective of the training is to find a set of weights which
yields a correct classification.

Decision-based Learning Rules In order to to accommodate the complex
decision boundary, a hierarchical nonlinear structure is adopted. Based on
reinforced and anti-reinforced learning strategy a distributed and localized
updating rule is proposed. The gradient of the discriminant function with
respect to weight parameters is used as updating direction. For complex
pattern distribution, the discriminant function is usually a priori unknown.
This leads to a credit assignment rule on when, what, and how to perform
network updating. Its main purpose is to alleviate the problem of overtraining
the networks.

There are three main aspects of the training rule:
(1) When to update? A selective training scheme can be adopted, e.g.

weight updating only when misclassification.
(2) Wh,' to update? The learning rule is distributive and localized. It

applies reinforced learning to the subnet corresponding to the correct class
and antireinforced learning to the (unduly) winning subnet.

(3) How to update? Adjust the boundary by updating the weight vector
w either in the direction of the gradient of the discriminant function (i.e., re-

inforced learning) or opposite to that direction (i.e., antireinforced learning).
The following describes Decision-Based Learning Rule: Suppose that S -

{x(i), ... ., x(M)} is a set of given training patterns, each corresponding to one
of the L classes {i, i = 1, . .- , L}. Each class is modeled by a subnet with
discriminant functions, say, O(x, wi) i = 1, ... , L. Suppose that the m-th
training pattern x(') is known to belong to class Qi; and

O(() ý) > O(Xl) W'-) i: j )

That is, the winning class for the pattern is the ith class (subnet). When and
only when j : i, (i.e., when x(m) is misclassified), the following update will
be performed:

Reinforced Learning: w•m+1) W 1 X) + 77V70(X, wi)
Antireinforced Learning: w (m+i) W () - qV((x2 wj)

Learning Rules for Elliptic Basis Function (EBF) Neurons The ba-
sic RBF version of the DBNN discussed before is based on the assumption
that the feature space is uniformly weighted in all the directions. In practice,
however, different features may have varying degrees of importance depend-
ing on the way they are measured. This leads to the adoption of a (more
versatile) elliptic basis function(EBF). The EBF decision-based learning is
very effective for many practical applications when features may use different
weighting. For examples, if features pertaining to eye-glasses is assigned min-
imum weighting, the recognition rate would remain robust even if a person
wear different eye-glasses in the testing phase.
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In practice and for most applications, the EBF discriminant function is
confined to the following (upright) version: The discriminant function (for
each subnet 1) can be generalized to an (upright) elliptic function:

O(x, wi) 2 : ajk (xk - 11k) + o0 (3)
k=1

where N is the dimension of the input patterns, and wi is the vector compris-
ing all the weight parameters {alk Ž_ 0, w1

k, 011. The learning formula leads
to

Reinforced Learning: WWM t+ +Taik(x - wk))
a(m±1) = ,(in),(naik ia k + Thzk( k-W ~km) (Aai(k+1) _w(mk) ___ 77(X wik(4

Antireinforced Learning: W Y+i) =(M) + 77a.k(xk - ) (4)

a1 k =aj + 77Xk -Wjk)

Learning Rule for Hierarchical Networks The network hierarchy can
be divided into several levels:

" Person-level: supervised mutual training

Decision-based learning rule is used.

" Angle-level: hybrid supervised and unsupervised training

If the angle information is available in the feature extraction phase
supervised training may be used. Otherwise, unsupervised training is
an optional schema.

" Instantiation level: initialization by unsupervised clustering

The purpose is to enhance the robustness of the network. Several ap-
proaches can be used to estimate the number of subclusters. When too
many subclusters are adopted, the improved approximation is often a
result of over-training (i.e. overfitting). This in tur~nwill hamper the
model's generalization capability. The number of subclusters can be ei-
ther predetermined based on some prior knowledge on the face feature
distribution. In general, it is determined based on the unsupervised
clustering technique subnet growing strategy adopted.

Hybrid Locally Unsupervised and Globally Supervised Learning
The training scheme of DBNN is based on the so-called LUGS (Locally Un-
supervised Globally Supervised) learning[5]. There are two phases in this
scheme: during the locally-unsupervised (LU) phase, each subnet is trained
individually, and no mutual information across the classes may be utilized.
After the LU phase is completed, the training enters the Globally-Supervised
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(GS) phase. In GS phase teacher information is introduced to reinforce or
anti-reinforce the decision boundaries obtained during LU phase. The dis-
criminant functions in all clusters will be trained by the two-phase learning.

4 Performances on Face Databases

Experiments have been conducted both on public (FERET) and in-house
(SCR) databases. The performances are summarized below.

4.1 Frontal View Experiment - FERET Database

A front-view experiment was conducted on the ARPA/ARL FERET database.
There are 304 persons, and each of them has two frontal view images. The
variation between the two images is much larger than SCR 80x20 and 40x150
database, in terms of illumination, size, and facial expression. We selected
the the images which passed both the face detector and eye localizer. Based

on this criterion, 200 persons have passed and are used for our face recog-
nizer experiment. One image per person is used for training and the other
for testing. The current DBNN reaches 100% in training accuracy and 96%

in testing accuracy. An improved probabilistic variant of DBNN can achieve
an even higher recognition rate (99%), cf. [6].

4.2 Frontal View Experiment - SCR 80x20 Database

The SCR 80x20 database consists of 80 people of different races, ages, and
genders. The database contains 20 images for each person. (If a person wears
glasses, 10 of the image are with glasses and 10 without.) All of the images
were taken under natural indoor illumination condition. All of the images has
clean background. The facial orientations in our image database are roughly
between -15 and 15 degrees. In many of those images, the person's head is
tilted up to 15 degrees. The face recognizer was trained by half of the images
in the database.

We have created a training data set by using 4 images per person (2 with
eye glasses and 2 without, if the person wears eye glasses). The testing image
set includes 16 images per person, 1280 images in total. For all of the images,
the face detector always correctly detected the center of the face (i.e., 100%
success rate). Eye localization is a more difficult task than face detection, in
particular when eye glasses are present. The eye is typically 20 pixels wide
and 10 pixels high. Among the 1280 images, eye localizer mis-detected the
eyes in 5 images by errors of more than 5 pixels. For the remaining 1275
images, the DBNN face recognizer can achieve 100% recognition rate.
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4.3 Experiment on Large Orientation Variations - SCR

40x150 Database

In this experiment, we have used another image database of 40 people. The
database contains 150 images for each person, which were taken continuously
-hile the person was slowly moving/rotating his head. Heads rotate not only

in wide angle (up to 45 degree) but also along various axes (i.e., left-right,
up-down, and tilted rotations). The face detector and eye localizer worked
correctly for 75% of the 6000 images in this database. (They are considered
a valid deta seO) Note that The current face detector and eye localizer were
trained only on frontal view faces. They nevertheless can handle faces within
30 degree reasonably reliably. Indeed, most of the failures occurred for faces
with large rotation/tilt angle (45 degree or more).

Of the valid data set, 20% were used as training set for the face recognizer.
in the test phase, we have used 60 images per person for testing. That yields
24z0 images for 40 persons. To ensure fairness, the 2400 images were ran-
domly picked from the entire database (excluding those used in the training
set). As a result, only 2176 images of the chosen were from the valid data
set. Nevertheless, the recognition rate remains very high (98%).

Z_, Performance in Training Time and Recognition Speed

The processing speeds of DBNN face recognizer are fast for both training
and recognition. The training times for all the three databases are less than
one hour on SUN Sparcl0 workstation. As to the recognition speed, for the
whole recognition process including eye localization, feature extraction, and
classification using DBNN, less than 0.2 second will be needed, again based
on the Sparc10 processing speed.

5 AppEcation to Palm Recognition

Facial biometric feature has difficulty incurred by often uncontrollable vari-
ations on lighting, orientation, size, facial expression, and aging. Recently,
a system that makes use of infrared images of faces is being developed. It
matches heat patterns around the forehead and eyes to file images. The ad-
vantage as claimed lies in the observation that the patterns that do not change
with age. However, in order to circumvent all the variations just mentioned,
palm patterns offers a relatively more reliable biometric feature.

We are developing a DBNN-based palm recognition system by a simi-
lar DBNN-based technique. The preliminary study verifies that the DBNN
recognizer is effective for palm recognition. Figure 2 illustrates the system di-
agram. When a palm is placed in front of the camera, the system will extract
the edge feature from the image, down-sample it to a 18 by 16 dimensional
feature vector, which will be processed by a DBNN-based palm recognizer.
The system can also provide indication on whether this palm belongs to the
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permissible database or a possible intruder. For our preliminary study, a

small (32x3) palm database was created. Each of the 32 persons has 3 images

of his/her right palm taken, one will be included in the training set, and the

other two in the testing set. Only one out of 64 test images is mis-recognized,

i.e. nearly 99% recognition rate.
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Figure 2: DBNN-based palm recognition system.
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A Probabilistic DBNN with Applications to
Sensor Fusion and Object Recognition*

Shang-Hung Lin S. Y. Kung Long-Ji Lin
Princeton University Siemens SCR

Abstract

Given an input vector say x, a classifier is supposed to tell which
class is most likely to have produced it. Thus most data classifiers are
designed to have K output nodes, each corresponding to to one of K
classes, {wj : i = 1, ... , K}. When pattern classes are clearly sepa-
rated, this kind of data classifier usually performs very well. A specific
model is the Decision-Based Neural Network (DBNN)[2], which has
been shown to be an effective classifier in many signal/image classifica-
tion applications. This is particularly the case when pattern classes are
clearly separable. However, for those recognition applications which
has complex pattern distribution with two or more classes overlapping
in pattern space, the traditional DBNN may not be effective or appro-
priate. For such applications, it is preferable to adopt a probabilistic
classifier. In this paper, we develop a new probabilistic variant of the
DBNN, which is meant for better estimate probability density func-
tions corresponding to different pattern classes. For this purpose, new
learning rules for probabilistic DBNN are derived. In our experiments
on public (FERET) and in-house (SCR) face databases, we have ob-
served noticeable improvement in various performance measures such

as recognition accuracies and, in particular, false acceptance/rejection
rates. Taking advantage of probabilistic output values of the DBNN,
we construct a multiple sensor fusion system for object classification. In

a sense, it represents an extension of the traditional hierarchical struc-
ture of DBNN. This will be discussed in section 3, where experimental
results on car recognition will also be reported.

1 Introduction

Basic Gaussian Formulation Suppose the likelihood density of input x
given class wi is a D-dimensional Gaussian distribution, then posterior prob-

*This research was supported in part by the Electronic Eye Program. The authors also
wish to acknowledge the invaluable contributions by Drs. M. Fang and I. Chakravarty of
SCR.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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abhli.t Pi( -) hr Bayes rule:

P) , p =~w)mNTuiZi)

C-nCa P(ý) is the u-jor probabiliry of class wv (Z121 P(w;) - 1), and p(x)
-W

The class likelihood function <xswi) can be extended to mixture of Gaus-
sian distributions. Define p( E)wi, 07) to be one of the Gaussian distributions

<-_ rcons~st" of u•(x~w where 07 { Z-, IJ is the parameter set for this

d i ID I -L__t0 1

nhr 8 Iu,;) is the prior probability of cluster T when input patterns are

from_ class w;-. By definition :l ) - 1.

In tis naper, w7e propose modifying each subnet in a tradition DBNN (cf.

-igu 1(a)) into a probabilistic subnet, shown in Figure 1(b). The purpose
o- th1s modification is to make the output of the subnet i emulate P(w);1x).

T1 sc, then the new DBNN becomes essentially a Bayes classifier. Notice that
Le welsn -ýd sum of each subnet in multi-cluster DBllNN is performed aflte

te-c enponcntial normalization. In the special case, when P(w:) = P(wj), the
suanet outut becomes ,(x)- a sojr uction

uE lP, z smczn functIo[.

D`IC 3a ss _n tInn (ELT' In most general formulation, the basis

uncton of a cluster should be able to approximate the Gaussian distribu-

L'on ,it' fu]]-ranik covariance matrix, i.e., O(xs, w) =- -IX T
Zr, where Yj

is the covariance matrix. A hyper-basis function (HyperBF) is meant for

-his. o-<er, for those applications which deal with high dimensional data

ubu finite number of traininng patterns, the training performance and storage

snece discourage such matrix modelling. A natural simplifying assumption
-s Lo assume uncorrelated features of unequal importance. That is, suppose

:ne' <xx', 0•) is a N-dimensional Gaussian distribution with uncorrelated

:•erates, that is,

G~si~•): 1 •S(1j ("- -id) 2

(2-,)-D/2 2h =a 2 U1

LWi,--. i [,2, - .,•D]T is the mean vector, and diagonal matrix

- 2 0_ ", u,_o] is the covariance matrix.
As described in [2] and [6], DBNN has K subnets for K-class classification

pro_ , inside each class subnet the elliptic basis functions (EBF) is used
-o sere as the dis+ccminant -function for each cluster:

o, e-) - Oid-- - Wid) 2 +:(2)
d=i
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If 0i is set to Oi -z-ln27r+ ½ D l ln aid then exp{O(X, wi, E)} can be
viewed the same Gaussian distribution as described in equation 1, except a

minor notational change: 1 = 0-2
Of•id id

2 Probabilistic DBNN

Let us now look into a log-likelihood formulation for the DBNN. To model the
log-likelihood functions, it is desirable to have the output of a neural subnet
approximates

Yi (x) = logp(xlwi) = log[E-- P(19, 1wi)P(xjE),, wi)] (3)

r

Referring to Figure 1(b), the final node will be a nonlinear log operator.
Note that an explicit teacher value would not be required, although it is a
supervised training because teacher's knowledge on correct classification is
crucial in the training.

Learning Rules for Probabilistic DBNN The training scheme for prob-
abilistic DBNN has two phases. The Locally Unsupervised (LU) phase is the
same as the original version[2, 6]. Several unsupervised learning schemes (e.g.,
LVQ, k-mean, EM...) can be applied to decide the initial values of parame-
ters. The second phase is Globally Supervised (GS) learning. The goal of the
GS learning is to increase yi(x) if x C wi (reinforced learning) and decrease
yi(x) if x ý wi (antireinforced learning). We can use gradient ascent method
in the GS phase:

Dyi(X)
0hj(X) a - ))

1yi M 1 2())(4__ = _ _-(.-(4)

aa ±hj~x)2 ,(r) (j-A

where

h (x) P(EkIuw)p((x wi, Ck)hj( , =~ e • •Wip(X1iw, 0,)

Here ± are for reinforced and anti-reinforced learning respectively. P(Ok Iwi)
(and P(wi), if necessary) can be learned by the EM algorithm [3]: At epoch

J,

k Er P((,1i()PX' O , er)
N

P(wk)(j+1) = (1/N) E P(wIk 1))(j)
t=3
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Training Accuracy Testing Accuracy

Probabilistic DBNN 97% 99%

Traditional DBNN 100% 96%

Multi-Layer Perceptron 99.5% 87.5%

Table 1: Performance of different face recognizers on FERET database.

11 Traditional DBNN Probabilistic DBNN

Success 97.92% 98.34%

Correct reject 0.96% 0.59%

False reject 0.40% 0.38%

Misclassify 0.72% 0.69%

Table 2: Performance of face recognition system using database with large

head orientation.

Experiment 1: Frontal View Faces We have conducted the experi-
ment on two image database: the SCR 80x20 database and the ARPA/ARL
FERET database. More detail about the SCR 80x20 database can be found

in [6]. For the 1275 images which successfully passed the eye localizer, face
recognizer can achieve 100% recognition rate, no matter it was implemented
by traditional DBNN or probabilistic DBNN.

As to the experiments on the ARPA/ARL FERET database, 200 persons
have qualified for our front-view face recognizer experiment (see [6]). One
image per person is used for training and the other for testing. The face
recognizer experimental results are shown in table 1. We can see that un-
der reasonably high training accuracy (97%), probabilistic DBNN achieved
higher recognition rate (99%) than traditional DBNN (96%). We also tried
to use Multi-Layer Perceptron(MLP) to implement face recognizer. The per-

formance is inferior to both types of DBNN.

Experiment 2: Faces with Large Variations The experiment is on the
SCR 40x150, database, which was discussed in [6]. Trained by the so-called
valid data. set and tested under a broader dataset, cf. [6], the face recognition
results of the two DBNN models are summarized in Table 2. The recognition
rate is very high for both types of DBNN. The results also indicate that
confidence scores can be used to select "good" images for final recognition
when a sequence of images are available and not all of them are in good
quality.
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w/onegtie eamles w/negative example

_ProbabilistCic LBNKr 1-3.75% 3.13%
ýTraditional DBITNTL 33.75%22%
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3 Multi-Channel Fusion Networks

The problem of combining the classification power of several classifiers is
of great importance to various applications. First, for several recognition
problems, numerous types of features could be used to represent and recog-
nize patterns. Also, for those applications which deal with high dimensional
feature data, it makes sense to divide feature vector into several lower dimen-
sional vectors. By extending the hierarchical structure of DBNN, we propose
several multi-classifier fusion networks. The multi-classifier DBNN consists of
several "classifier channels", each of which receives input vectors either from
different sensors or from a portion of a higher dimensional feature vector. The
outputs of channels are combined by some proper weightings. The weight-
ing factor is assigned based on the confidence the corresponding channel has
on its recognition result. Since DBNN generates probabilistic outputs, it is
natural to design the channel weightings to have probability properties. The
overall configuration of multi-channel fusion network is depicted in Figure
2(a), where the score functions from two channels are combined after some
proper pre-weightings.

In the so-called class-dependent channel fusion, the weighting factors
correspond to the confidence P(Ck wi) for each channel. Here P(Cklwi) rep-
resents the indicator on the confidence on channel k when the test pattern is
originated from the wi class. (By definition, Ei P(C- w) 1, so it has
the property of a probability function.) Suppose that there are K channels
in the subnet wi, and within each channel there are R clusters. The proba-
bility model of the DBNN-based channel fusion network can be described as
follows. (See Figure 2(b).)

K

pXx wi) E P(Ck 1wi)p(X Pi, Oh)
k=1

where p(xjwj, Oh) is the output of subnet i in channel k, and p(xjwj) is
the combined output for class wi. Note that x = [xT,..., XT ]T, and since

p(xlwi, CO) is conditional on Ck, only Xk is involved in the above formula.
After all the parameters within channels complete their training, channel
confidence P(Cklwi) can be learned by the following: Define ak = P(Ckiwj).
At beginning, assign ak = 1/K, Vk =1,..., K. At step j,

h.)(t) P1w, ) ( ) hj)(t) (7)

Once the NN is trained, then the fusion weights will remain constant during
the retrieving phase.

A more general version of multi-channel fusion is called data-dependent
channel fusion. Instead of using the likelihood of observing x given a class
(p(xjwj, CO)) to model the discriminant function of each cluster, we shall use
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the posterior probabilities of electing a class given x (p(wjx, C5 )). For this
version of multi-channel network, a new confidence P(Ck Is) is assigned, which

stands for the confidence we have on channel k when the input pattern is x.
Accordingly, the probability model is also modified to become

K

P(CwJ Ix) ZP(Ck IX,) P (Ci I, Ck)
k=1

F> xCO) can be obtained by P(W>,C5 ) P(WjlCk)P(a>,Cs)/p(aJCk),
and the confidence P(QC5 as) can be obtained by the following equations:

P(Cklm) - ___________

qere__ oCŽ),, can be computed straightforwardly by equation p(xlCk)
• P(,o [c•)p(s [,-, C5 ) and P(Ck) can be learned by 7 (but replace p(xlwi, Ck)
wh p(x!C,2)). The term P(Ck) can be interpreted as "the general confi-
dence" we have on channel L. Unlike the class-dependent approach, the fusion
weights need to be computed for each testing pattern during the retrieving
phase.

Mult'-Cinanel Data Fusion for- Object Raecognition WVe have con-
nuýted a preliminary experiment for testing the performance of the multi-
channel network shown in Figure 2(a), where the class-dependent fusion is
adooted. To facilitate the training phase, we employ (what we consider to
he) faster DBNN training, based on EBF (elliptic basis function) modules. In
order to obtain a probability function expression, a normalizing scaling factor
A will be introduced for every channel in each class used. In the fusion phase,

c made the following simplifying approximation: we use the dominant clus-
ter to express the probability function p(a lcw, e, C,). Such a simplification
ueads to the following formulation:

N

p(a wjj, C-,) at AEa-p[- E OIL (as W10)2 + Oil
k=t

simple experiment was conducted: Six car models from different view angles
were used to create the data base, cf. Figure 3(a). 28 to 29 256 x 256 pixel
sized images were taken for each car model from various viewing directions.
Two sensor channels were built from two different feature extraction methods:
one uses intensity information and the other edge information, cf. Figure 3(b).
After proper size/illumination normalization, images were down-sampled to
i2 x 12 pixel size. The down-sampled pixels were used as input features
for each of the sensor channels. Ten different simulations are conducted.
Each one randomly choose 90% of the images (within each class) for training
DBNN. The remaining 10% were saved as testing patterns. We then took the
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average of the error rates of the 10 simulations. According to our simulation,
the fusion of two channels (with 94% and 85% recognition rate each), the

recognition rate reached 100%. At least in this experiment, the proposed

class-dependent channel fusion did improve the recognition performance over
individual channel classifiers.
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Figure 1: (a) Schematic diagram of DBNN. (b) Structure of Probabilistic
DBNN.
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Figure 2: (a) An exemplar DBNN-based multi-channel fusion network. Here
Cki denotes the output of the i-th subnet in channel k (= p(x jWj, Ck)) and
Wsi (= P(Ck jwj)) denotes the channel confidence. The final decision is based
on Oi which is the combination of the weighted outputs for subnet i. Theo-
retically, 0. can be equated to p(zjwi). (b) The derivation of p(zjwi) may be
better explained by this probability model for DBNN, see Section 1. For the
discussion on multi-channel DBNN, see Section 3.

Intensity Channel

2Sensor 
Final

~ ~Fusion Result
Edge Channel

Figue 3 (a)Som exaple ofcar models. (b) Given an original image, two
sensor channels are used to extract features. The recognition is then obtained
by channel fusion.
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Abstract -- inage compression is an essential task for im-
age storage and transmission applications. Vector quantiza-
tion is often used when high compression rates are needed.
Self-Organizing Map (SOM) algorithm can be used to gener-
ate codebooks for vector quantization. Previously it has been
demonstrated that using the special property of the SOM al-
gorithm that the codebook entries are ordered one can use
prediction coding of codewords to make the compression more
effective. In this paper it is shown that training the SOM al-
gorithm by using different weighting for sample blocks having
different statistical characteristics one can further increase the
compression efficiency.

IMAGE COMPRESSION BY SELF-ORGANIZING MAPS

Image compression is an essential task for image storage and transmis-
sion [1]. Lately the image compression using Vector Quantization (VQ)
techniques has received large interest [2]. VQ methods offer good per-
formance when high compression rates are needed. In VQ approaches
adjacent pixels are taken as a single block, which is mapped into a fi-
nite set of codewords. In decoding stage the codewords are replaced by
corresponding model vectors. The set of codewords and the associated
model vectors together is called a codebook. In VQ the correlation which
exists between adjacent pixels in a block is taken into account, and with
a comparatively small codebook one achieves a small quantization error
in reconstructed image.

The main problem in vector quantization is to find a codebook which
minimizes the quantization mean error. Many design algorithms have
been proposed. One of the best known is the Linde-Buzo-Gray (LBG)
algorithm [3], which iteratively searches clusters in the training data.
The cluster centers are used as the codebook model vectors, while the

0-7803-2739-X/95 $4.00 © 1995 IEEE
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codewords are selecteti arbitrarily. An unsupervised neural network al-
gorithm, the Self-Organized Map (SOD) algorithm [4][5] has also been
used. In SOD the unit model vectors form the codebook, and the unit
coordinates are used as codewords. Comparisons of the distortion errors
in using the codebooks produced by either the SOM algorithm or the
LE3G algorithm indicate that these two methods give rather similar per-
formance [0][7]. In [7], the SOD\I algorithin was found to be more robust
than the LBG algorithm to initialization.

The main difference between LBG and SOM algorithms is in the order
of the codebook model vectors. The LBG algorithm does not define any
order in the codebook; the codewords for model vectors can be selected
arbitrarily. On the other hand, the codebook trained using the SOM
algorithm has an internal order: adjacent codebook entries which have
similar codewords, have similar codebook model vectors.

Lately. it has been recognized. that the ordered codebooks can be used to
niprove the image compression efficiency [8][9] [10]. Because the neigh-
boring pixels in images correlate to each other, one can use the knowledge
of the previous pixel value to predict the next pixel value, and code only
the difference between the prediction and the real value. Therefore one
can redlice the transmission rate considerably. Because the similarities
between adjacent blocks in the original image are converted to similar-
ities between the corresponding codewords, the prediction coding can
now ibe used together with the vector quantization algorithm by predict
coding the codewords (instead of pixel values). One can then improve
the compression rates attainable by vector quantization by 15 to 20 %A
[10].

IMPROVIYNG THE EDGE PRESERVATION I1 IIMAGE
VECTOR QUANT1ZATIOIT BY SAMIPILE OCCURRANCE
VTE - C' HT1NG

Edge, preservation is a serious problem in vector quantization of image
data. The design algorithms tend to find good model vectors for samples

hIich occur freouently but rare samples are not well represented. The
ede 'oin images form such a rare group of samiiles, where there are only
hew ist'inces of separate edge orhentations and amplitudes. However, the
edges in imaoe> are important for the human acceptance of the decoding
aesults HRagged and uneven edges ii images are very easily noticed anti

aecrease the subjective quality of compression result, altough the signal-
to-noie, rations mav show rather good decoding qualitv.

In [11] it 'was proposed that by modifying the training law of the SOM
algorithm used in traiiing the codebooks, one can improve the edoe
preservatioi capabilities. The proposal was based on the heuristic rule
that one should pay more notice to image blocks -where there are edges
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or other 'features'. The 'edgeness' of the block was computed using a
variance measure of the gray level distribution of pixels xk inside the
block x:

2 N 2 _ 2

k=1

where xr is the mean value of gray levels in block and N is the number of
pixels. In [11] the variance was then used to compute a weighting factor
w(o'), which was considered as multiplying the number of occurrences
of the sample x. In the following experiments we adopted a similar
approach using (2) to compute the multiplier for sample count:

w(a) = (max-weight - 1.0)' +1.0, (2)

where imax is the maximum variance value possible. Thus using the

'maxweight' value of 1.0, the algorithm behaves as the original.

Results with edge preservation

We used codebooks with 512 entries and coded 4 by 4 pixel subimages,
which gave a 0.5625 bpp (bits per pixel) raw bit rate on the image
compression. The codebooks were trained using 28 images of faces (both
males and females) and tested using another face image, which was not
contained in the training set. All the images were 512 by 680 pixel 256
gray level images. The topology of the Self-Organizing Map was three
dimensional having eight units on each dimension.

The image degradation was measured using a peak signal-to-noise ration
(PSNR) defined as:

PSNR = 10 log 255 dB, (3)
MSE

where MSE was the mean square error. The resulting PSNR values and
standard deviations of the results on ten training runs for each different
weightings are collected to Table 1.

From the results one can easily see that the sample occurrence weighting
improves image quality. The PSNR values grow up to weighting 20 and
even after that up to weighting 200 the PSNR values are larger than
using the standard version of the SOM algorithm.

In Figure 1 some details of decoded images are shown. The edge between
ear and background has been decoded using codebooks which have been
trained using weighting factors 1.0, 10.0, and 100.0, respectively. The
continuity of the edge is improved when the weighting factor increases.
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Max weigit PSNR St
in training va de 35.0

1 34.56 0.03 48

20 34..8,G0.0.5 34.15 34.66 0.04

10 34.66 0.0 34.4

20 34.80 0.08 34.2 PSNR foriffrent f heightings -
50 34.7-2 0.10 [4,0 'Standar dheviation of PSNach

100 j34.69 0.0 7
200 j3-1.65 0.04I 3'8 2 b It 2,U tT00

.500 34.17 0.04

1000 133.82 0.00

Table 1: RSNPR values in imnage coding ond decoding ex-
pprira rots using different valucs for the maxinmutm weight-
ing. Ten indepcn dent training runs hove been tried for each
weighting.

S...................<

I : I [

Fiure 1: Th e th'rCe iRn ges arc detoils of decoded images
Whucl' thed conpr(rssion codebooks Ih ae bCIenT trained using

'l(ighti,7g furto7"rs 1.0. it.0 and 100.0, respectivel'. Notice

tht?, inC( rC(ns,s2 COtin uitg of the edges in imnages from left to

igh t.

ii"AT S1 1N- THE COMAPRESSI[O0N1 EFFICIENCY BY

SA<CPL.0 COCULRLANCE WEIGHTING

Tin modifyinig th1 sample count for SOI\ training one affects the distri-
bhitioi oa the model vectors so that the flat blocks (where pixel gray
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values are more or less the same) get fewer representatives in codebook
compared to the original training algorithm. Therefore the number of
different codewords used in coding flat areas in images is less than if the
original codebook were used. If prediction coding of codewords is used,
decreasing the number of possible codes leads to more compact coding
of the flat areas in images.

In the following some exeriments are described where the previous idea
has been tried. Test image has been compressed using different weight-
ings in codebook training and prediction coding the resulting codeword
sequences. The following results are means over ten training experi-
ments.

Results with original training algorithm and prediction coding

The test image was first vector quantized using the original SOM algo-
rithm. The raw bpp rate for the coding is 0.5625, but some improvement
can already be gained if the frequency of occurrence of each codeword
is taken into account (using for example Huffman coding). Because the
test image was not used in training the codebook not all codewords are
used equally probably. After Huffman coding the bpp rate for the test
image was 0.544, which is 3 % less than the raw value.

The image is vector quantized sequentially, one row at a time. Because
there naturally exists some correlation between adjacent blocks in the
image, it is advantageous to make a prediction of the codebook vector
which is going to be used based on codewords used for the nearby blocks
and then code the prediction error only. In our experiments we computed
the prediction d of the codeword a(i,j) to be used in location (i,j) as in
[9]:

a(ij -1), if d(a(i - 1,j),a(i - 1,j - 1)) <
a(i,Aj) d(a(i,j - 1),a(i - 1,j - 1)) (4)

a(i - 1,j), otherwise,

where the distance d(a, b) between codes is defined on SOM as d(a, b) =

Ila - blI. In image borders the prediction was based on available code-
words.

After prediction and Huffman coding the codewords the bpp rate for
the test image was 0.443. That means 19 % reduction in bpp from the
Huffman coded raw codeword sequence, and 21 % reduction in bpp from
the raw codewords. These figures are well in correspondence with the
figures given in [10].

Results using the sample occurrence weighting

The bits per pixel rates and PSNR values of the experiments have been
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collected to Table 2. Different weighting factors have been used in the
SO-I codelook training and prediction coding of the codewords has been
utilized before computing the bpl) rates. The results show that when the
weighting increases, the compression factor will also increase. The bpp
rates start to decrease rapidly when the maximum weighting is increased
beyvrod value 20.

Ia., -weigh Iuffi'man Prediction and Decrease, from PSNR

in trainingo coding Huffman coding raw code vae

1 0.544 0.443 21 (t 34.56
2) 0.539 0.437 22 % 34.56
5 0.544 0.439 2'2 (/c, 34.66

10 0.543 0.4.30 9-24 ', 34.74
20 0.34,5 0.425 24 %t - 34.80
*50 0.,543 0.406 28 'A 34.72

100 0.540 0.382 32 W 34.69
200 0.540 0.3.59 36 /c 34.65

0.,527 0.317 44 it 34.17

1000 0,523 0.206 47 it [ 33.82

Table 2: Bits per pixel rates arnd PSNRI values using differ-
e,?,t raulues for the maxmimrnum, weighting. The relative de-
cra se in bpp rate is compyted against the raw bpp rate
0.5625.

The quantization error is in its mnininum when the weighting is between
10 and 50. After that it starts to increase again. When the weighting

is more than 200 the quantization error has significantly increased from
thma of smaller weightings. To get a similar quality of images as in
originah quantization algorithm, one can use weightings up to 200. At
that level the relative decrease in bpp rate is about 36 it.

In Figire 2 bits per pixel rates and PSNR values for different weightings
arc shown in another format. The bpp rates are on the vertical axis and
the lower points on the Figure mnean better compression ration. PSINR
vaues are on the horizontal axis and the best quality of images is on the

rig-ht side.

DISC U0SS10N

The Self- Organizing Matp can be used to train vector quantization code-
-ooks for image compression. Because the SO1 algorithm orders the

codebook entries prediction coding can be used to further improve the
compression efficiency. In this paper it has been shown that training the
SO1 algorithm by rsing different weightings for sample blocks having
different statistical characteristics one can further increase the compres-
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Figure 2: Bits per pixel rates (after codeword prediction
and Huffman coding) and PSNR values as a function of
weighting factor in a two dimensional diagram.

sion efficiency. Without affecting the image quality compression rates
can be improved by 36 %. It is also possible to improve the image qual-
ity if somewhat smaller improvement in compression rates are allowed.

In these experiments only a variance of gray levels was computed of each
image sample. Some other statistical measures might produce better re-
sults. For example, preserving the true lines going through the image
sample is more important for subjective acceptance of the decoded im-
age, than preserving random samples even if the variance of samples
were the same. In future studies some other statistical measures are to
be tested.
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The Method of Convected Activation Profiles was developed to measure short-
range visual motion of edge and point features in time-varying imagery. Each
feature is assumed to generate a spatiotemporal Gaussian activation profile
that results in a shape-preserved activity wave that is convected along with
that feature, and the phase velocity of the wave provides a velocity estimate of
the feature. By this method, both explicit feature tracking (a complex and
computationally expensive operation) and the assumption that intensity is con-
vected (which is rarely justified) are avoided. The method is suitable for real-
time implementations [7,16] and can be described in terms of shunting dynam-
ics of neural systems [7]. Spatiotemporal filters that measure the velocity of
lines and points were described and demonstrated in the earlier work: this
paper presents a detailed analysis of the accuracy of the method in scenes con-
sisting of highly textured objects with fixed projections onto the image plane.
We also describe how to accurately measure the velocity of short lines and line
ends; in the past the velocity of short lines was severely underestimated, and
the velocity of line ends could only be measured by recognizing line end fea-
tures and evaluating the speed of these "point" features in isolation. This new
method simplifies velocity extraction yet requires no additional computation.
Finally, we clarify our earlier suggestion for selecting a velocity estimate from
among several filters of different scales.

I. INTRODUCTION

Image flow is the projection on the image plane of object motion in the 3D world
[15]. Any motion system which examines motion in large neighborhoods must

1. This work sponsored by the Air Force Office of Naval Research, Department of the Navy,
and the Advanced Research Projects Agency under Air Force Contract F19628-95-C-
0002. Opinions, interpretations, conclusions, and recommendations are those of the
author and are not necessarily endorsed by the United States Air Force.
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begin with a mechanism to obtain local estimates of motion. In this paper we con-
centrate on\ what has been traditionally classified as the short-range motion process
[41, although we have also modeled the long-range motion process [6]. In addition,
the technique used here to establish correspondence between proximal features
across short times is closely related to another model of the long-range process [9].
There are two classes of short-range motion models, luminance-based models,
which compare local filtered luminance at one position to local filtered luminance
at a later time, and feature-based models, where geometrical features invariant to
illumination are identified and tracked. Luminance-based models fall into three
classes: correlation models [2,3,12], local phase velocity models [8], and gradient
models [1,10, 11]. Feature based models track features via explicit correlation [14]
or bv the growth and decay of a Gaussian activity wave as in the method described
here. This method can provide direct velocity estimates by measurine the phase
velocities of waves generated by and convected along with the features. The advan-
tace of feature-trackin- models is that the image flow features (e.g. edges and cor-
ners) usually represent projections of physical events such as object or texture
boundaries that are stable and identifiable across short expanses of space and time.
Luminance-based methods often assume that image intensity is convected along
with the object itself. This is only true when an object with a lambertian surface is
stable \with respect to light sources, thus allowing only motion of' the viewer when
in man-made ligeht conditions.

H. CONVECTED ACTIVATION PROFILES IN TWO DIMENSIONS

As formulated in the original model of Convected Activation profiles, each feature
generates a wave of activity, which is convected along with the feature. The phase
velocity of the wave is measured to obtain an estimate of the feature velocity itself.
We model the activation function as a Gaussian spatiotemporal kernel, with a sym-
metric influence of space and time:

0 [(' + '= + l

G =Ce (I)

(In later work we have modeled the activation kernel as a spatiotemporal Gaussian
with a temporal component that acts as an exponential fading memory [7].) The
activation distribution is modeled as the convolution of the activation function with
the feature map:

A (.x. r. t) = G" {x, y, i FI(x, 1) . (2)

To obtain the velocity estimate for an isolated point (with respect to the scale of the
ii -),conmpute (subscripts of A designate partial derivatives)
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•A L A,.,. - (A 2)21

To obtain the normal velocity of an edge, compute, in local edge line coordinates
(•, t) , with ý normal to an edge and r parallel to the edge:

) 1'Jiine (4a)

If the line is long and in isolation (with respect to the scale of the filter), then we can
convert from local edge coordinates to image coordinates:

S,(x,y, t) = - I-.-(4b)L V-A j l,,,,

A more extensive derivation of these results can be found in [16], but some of the
underlying assumptions are clear from even this abbreviated explanation.

First, there is the assumption of isolation, which says that only one line or point is
present in a neighborhood on the scale of each spatiotemporal filter. Incorrect over-
and under-estimates of velocity can occur when multiple features excite a single
spatiotemporal filter. When a highly textured (with respect to the filter size) surface
moves together as a whole, a complex activation profile is formed and convected.
Equation (3) can be used to recover the underlying velocity, because these equa-
tions hold for the case of arbitrary motion of an arbitrary convected profile, pro-
vided the features move together as a whole. To obtain local velocity estimates, the
components measured with (3) need to be interpreted with respect to the local tex-

ture features; in the case of a line, only the normal component (n,, y t) of the

velocity of the line can be measured, but the wave may provide velocity measures
for the entire neighborhood texture. To measure just the normal component of the
line, compute:

"', (X, , ) =0 ( n , t) -(1,, , 1" f,,,,,,,.,. (5)

Interactions can be detected by examining the Gaussian curvature of the profile
(i.e., the denominator of (3)). When the Gaussian curvature is positive (indicative
of a convex or concave surface), equations (3) apply. When the Gaussian curvature
is zero, the activation surface is locally either a cylinder or a plane. To differentiate
the two, consider the mean curvature:

H = (1/2) (Axx + A,) (6)
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\Lhen the mean curvature is also zero, the surface is a plane and no velocity infor-
mation is axailable. When H is non-zero, the activation surface is a cylinder, and
(42) and (4h) appl. Finally, consider the case where the Gaussian curvature is neg-
ati\ e: this indicates that the activation profile is locally a saddle, which implies that
severe interactions must be occurring on the scale of the filter. For the simulations

presented in this paper, these velocity estimates will he ignored. Note that since we
need to detect when H is zero, or the sign of H, we can omit the multiplication by 1/
2.and we are left with the Laplacian (center-surround) operator that must be com-
puted in am case for (4a) and (4b). If we assume that (3) and (4b) are computed in
parallel and only one (or none) is used at each location and scale, then the Lapla-
cian and the Gaussian curvature can be used to select the appropriate local velocity
estimate (i.e.. to act as a eate). If no velocity estimate is available for a given fea-
ture at a given resolution, another scale mnust be examined.

The remaining assumptions are not obvious from the preceeding explanation, but
were noted in [16]. In order to derive (4a) and (4b), the line was assumed to be
locally straieht, to move alone its normal, and to extend through the spatiotemporal
filter. When the line does not extend all the way through the filter, the curvature

(A') along the line in the denominator of (4b) will be overestimated. resulting in

fuflrther underestimation of the velocity. An accurate estimate is again provided by
(3). Application of the Gaussian/mean curvature test will indicate when the line is
lone enough and straight enough to use (4 1b). In the next section we will show that
this technique works well for lines that both translate and rotate in the image plane.

In an earlier paper, we suggested that if several different filters were all measuring
the same underlxying motion, a local competition between differing spatial scales
could be based on the "characteristic speed normalization" of each filter, so that the
choice would be based on:

This metric penalizes filters with large spatial scale in favor of filters with small
spatial scale, thus reducing the opportunity for spatial interactions within a single
measurement. Unfortunately, it also increases the opportunity for temporal interac-
tions, bv rexvarding filters with large temporal scale. We intend to have this metric
apply for filters with a variety of different 5 at a single value of r . In the human
cisual system the temporal scale -c appears to be set by the available light [5], and

there are known to be cells tuned to a range of speeds. Below we show that when "C
is allowed to vary, (7) does not always select the best filter.

I. SIMULATIONS AND RESULTS

In all simulations (except the first) the standard deviation of the spatial Gaussian is
set to 4.0 pixels. and the standard deviation of the temporal Gaussian is set to 1.0
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frame time. This implies that the filter will respond well to velocities less than or
equal to about 4.0 pixels/frame. There is a trade-off between feature interactions
and accurate velocity estimates. To minimize interactions, small filters should be
used so only isolated lines or points activate a single filter. To capture the true
velocity, the spatial scale of the filter must be large enough to capture feature dis-
placement. Both of these constraints will be exceeded in the following simulations,
and the resulting velocity estimates will be discussed.

We can describe the number of elements (E) in the activation mask (i.e., convolu-
tion) in terms of the standard deviation S and the number of standard deviations N
present in the mask as:

E=SxNx2+1 (8)

The choice of N (and thus E) involves a trade-off between accuracy in representing
the convected profile and computational demands: larger masks more accurately
represent that profile, while smaller masks require less computation. To accurately
measure velocity, the derivative of the activation function must be accurately mod-
eled to the limit of its linear regime. For a moving feature that generates a Gaussian
activity wave, the linear regime in the vicinity of the feature extends out to

where u is the true velocity of the point. The extension over 5 is due to the super-

position of Gaussian activity from times other than the present and beyond N=I
standard deviations away. By choosing N=2, these interactions can occur (which
enables the filter to represent speeds beyond its characteristic speed), and 95% of
the total energy in an ideal Gaussian is present in the mask. This is adequate for all
but those measurements at the upper limit of the filter's response, and is used here
in all simulations except those that explicitly examine mask size.

Mask size affects the size of the linear regime of activation about a feature point,
which in turn affects the maximum velocities that can be measured by a filter.

When the mask size is limited, the linear regime can only be extended to Nxa,

because this is the limit of the spatial interactions at one moment in time. This
implies that no filter should ever indicate a velocity greater than (NxG) /t ; such a

response would be due to quantization effects and can be safely ignored.

The simulations presented here were performed on a Sparc 1+ computer using

floating-point calculations1 and explicitly computing the derivatives indicated. This
has the unfortunate effect of amplifying noise in the original image, but enables the
simulations to be run rapidly. To obtain more accurate results and to avoid noise

1. The method does not rely on floating-point accuracy: in an earlier paper we demonstrated

that useful results could be obtained even with an 8 bit integer real-time machine [7,16].
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a.IMliticition. tilters that respond directly to Gaussian proIlfIc derivatives should be
placed at each spatial location. We sugeested [161 that such an inherently parallel
implementation may be used by the visual sy>stem, in analogy with the elocity-
tuned cells of NIT 114

Tmirce ar-e other consequences 01 approximating the derivative as a difference eclua-
tion. We estimate the velocity by the first derivative of the activation function, but
the derivative of the Gaussian is a curve (not a line) that reaches its maxima at one
stlandard deviation (G, -1 ) from the center. The Gausisian DeriN ative is almost linear
uteri] neaL- thie maxima, at which point it becomes slower than linear as it begins to
bend s eir. Differences taken when the velocity is small and the samples fall in the
linear regime approximate the derivative well. When one approximates the deriva-
tive by sampling the curve near the maxima, the velocity is sdightly underestimated.
\Vheni the phase shift is greater then thle scale of the filter (i.e., shen the motion
exitends beyond the maxilnlm of the Gaussian Derivative), the velocity can he sig-
a inc'antls underestiinmated.

1o:- each of the following plots, individual data points are marked with either an x.
an o. an :ýý. or a +, and the data points that were constructed with the same pa-aime-
tens are tied toeether with lines. A line with no data point on it indicates the ideal
respo•se. Missing data points occur when no velocity estimate could be made
(becausi the poi~nt was on a local plane of activity or on a saddle of activity). When
GacIsSian curvature o< equals zero and mean cur\ ature H equals zero, velocities on
thle plkae w, ill be "fIlled-in'" from velocities on the boundary of the plane.

S,. Poi_:nts in Iololo

In this section we show that the point speed estimates are extremely accurate for
snlal constant velocities, and slightly underestimate large constant velocities. We
atso• provide an example which indicates when the characteristic filter criteria will
not select the correct estimate across different values of T , and show how the
choice of mask size affects velocity measuiements. The response of three different
-ilters is depicted in Figute I, Where the left graph provides velocity estimates

obtained wVith a sm.aller mask size than the right ,graph. The two graphs differ only
v,ihcere the filter is heing used to measure speeds that exceed its characteristic speed

(7/ ). While the larger mask sizes provide better speed estimates, the truncated
masks also provide good results. Finally, the characteristic filter criteria suggested
abaCse w ould incorrectIV select the speed measured by the filter with c7 = 2, r = 2
fr the modeled speed of -4 pixels per frame, while the best estimate is provided by

the filter Vvith G = 4, 1 = I .

literactons between a point and a nearby feature can cause inaccurate velocity esti-
a-ates, and is related to confusion on the scale of the filter between the correspon-
dence of the two features. Wheln such confusion occurs, competition between the
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FIGURE 1. Measured vs. modeled speed of a point in constant motion.
Left is with masks that extend to N=2; Right masks extend to N=3.

scales as described in (7) will guide the selection of the true velocity. Low speed
features can be correctly measured by small scale filters which effectively separate
the features from their neighbors. High speed features moving together can be cor-
rectly measured by large scale filters which effectively group multiple features
together as a texture. These filters then measure the phase shift of the convected
complex profile as described above. The velocity estimation results for two points
moving as a unit with each separated from the other by a small amount is depicted
in Figure 2. The left side indicates the measured speed of the pair of points; these
should be compared with the (Y = 4,'r = 1 graph on the left of Figure 1. For all
separations, the measurable error is small out to the speed of 3 pixels per frame. At
this point, the activity waves generated by the points begin to interact, causing con-
fusion between the two waves. The speed reported here is for the leading of a pair
of points, and the underestimate is due to phase confusion of the leading point with
its trailing neighbor. A different scale filter will correct this problem; a filter with

5 = 5 accurately (less than .06 pixels/frame perturbation) measures speed out to 4
pixels per frame at all the indicated separations.

B. Lines in Motion

Isolated line velocity is very accurately estimated by the method of ConvectedActi-
vation Profiles; the graphs are nearly identical to those depicted for point velocity.
As explained above, the velocity of short lines (where the line is small when com-
pared to the filter size) is not accurately estimated by Equations (4a) and (4b), but is
well estimated by Equations (3). By using the Gaussian/mean curvature of the acti-
vation profile to decide between the estimation techniques, the velocity estimate is
significantly improved. Figure 3 demonstrates this fact for a line of varying sizes
mnoving through a filter with (5 = 4, - = 1 along its normal at the rate of two pixels

per frame. The original decision mechanism based on spatial proximity is quite
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2.5 -Measured speed of a binary line
25! -- Measured speed of an anti-aliased line
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Distance from axis of rotation (pixels)

FIGURE 4. Actual and estimated speed of a 100 pixel long rotating line. Some
small errors due to quantization of the line are removed when tracking an anti-
aliased line. The estimates degrade smoothly as the normal velocity increases
along the line. The final bowing of the curve is due to the line end.

perfect, only deviating significantly from estimates for a translating straight line
(Figure 1 , 7 = 4, c = I ) when the half circles move at a rate beyond the character-
istic speed of the filter. In this case, a larger scale filter gives results comparable to
those of a translating line.

7

Radius = 1

Rada4 Radus = 39.9 u"us = 5 

ais=5 ]'- ..

Raiu =. 19.9is 0Rdu =o 1aiu9,1.R a l us =" 3a iu = 9 .2 2
03

Radiuss 5
22 ý-0.5 xRadius 10

+, Rsdiss z 39.9

0 1 2 3 4 5 0 1 2 3 4 5 6
Modeled Speed (pixels per frame) Modeled Speed (pixels per frame)

FIGURE 5. Left: Estimated speed at the central point for half circles of various
radii moving towards their open end. Right: Difference between these results
and those obtained for a translating line.

IV. CONCLUSIONS

In this paper we have presented additional analysis and simulations of image fea-
ture velocity extraction by the method of Convected Activation Profiles, and imple-
mented an improvement to the algorithm for the specific case of objects moving
parallel to the image plane where the features are short lines or where the features
are close enough to interact. The central concept of the improvements is that inter-
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actions hetwseen a line and neighboring features produce a complex activity profile
thait is convected and has a phase velocity that can be measured. just as in the sim-
ple caises of isolated points and lines. The characteristic speed normalization [16]
used to select between different scale filters is shown to apply only ,vhen the spatial

scale parameter (7 is varied but not when the temporal scale parameter -r is v aried.

Finally. Convected Activation Profiles is demonstrated to he rohust even svhen mul-
tiplc features interact and for the condition of a line in rotation.
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Abstract - A Projection Pursuit (PP) method is used to find structure and reduce

the complexity of high-dimensional remote sensing data. Individual Projection Pursuit

networks extract features from Gray-Level Difference Vector distribut ions, Sum and Differ-

ence Histograms, or simple normalizations of raw pixel intensity from one of four spectral

hands used in the study. A PP piruning technique, based on an online perturbation anal-

ysis similar to that of (LeCun, Denker, and Solla, 1990), is used to remove parameters

of low significance. The four AVIRIS spectral channels studied here were chosen because

of their similarity to those which will be available from the Multi-Angle Imaging Spectro-

Radiometer, an instrument which will be on EOS satellites. Ensemble models. which com-

bine features extracted from AVIRIS imagery by multiple Projection Pursuit networks.

use backward error propagation with a cross-entropy objective function to obtain pixel
classifications. Predicted cloud masks are compared against human interpretation masks.

1 Introduction and Approach

In this paper, we investigate an approach to cloud detection in remote sens-
ing imagery using Projection Pursuit techniques. Our goal is to develop
textural feature extraction and cloud detection methods, which would be ap-
plicable to the imagery that will be produced by the Multi-Angle Imaging
Spectro-Radiometer (MISR). MISR will be one of the instruments on the

Earth Observing System (EOS) satellites and will obtain data in forn" spec-
tral channels in the visible and near infra-red spectrum. The first phase
of our investigation, described here, examines pixel-level detection of clouds
in Airborne Visible/Infra-Red Imaging Spectrometer (AVIRIS)[19] imagery.
While AVIRIS has extensive spectral coverage (0.4-2.41tm) of the visible and
part of the infra-red spectrum in 224 channels, our purpose in choosing just 4
channels from AVIRIS was motivated by our desire to obtain channels similar
to those of MISR. The second stage of our investigation, to be described in
a fiture paper, will be an analysis of a large corpus of 1km Advanced Very
High-Resolution Radiometer (AVHRR) data. Though the AVHRR visible
channels are spectrally broad compared to those planned for MISR, we have
opted for this data set because of its global coverage.

Textural feature extraction has been considered for GOES (Geostation-
ary Observing Earth Satellite) and AVHRR (Advanced Very High-Resolution
Radiometer) [9], [13] [5]. [6], [20], [171, [8]. Typical examples of these fea-
tures have been moments of gray-level difference vector (GLDV) statistics

0-7803-2739-X/95 $4.00 © 1995 IEEE
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[21]. [4]. sium and difference histograms (SADII) [18]. [4] and gra:y-level rin
length (GLRL) [21]. Neural networks have been used to find relationships
among these features that are useful for automatic classification [20], [17]:
classification results compare favorably to traditional statistical analysis [20].
What distinguishes our approach to textnral feature extraction. in particular
for the GLDV and SADH representation, is that we use Projection Pr'suit
to extract features from the histograms. treating them as input vectors in a
high-dimensional space,. rather than calculating pre-specified moments of the
histograms.

In this paper we extend the results of our previous research on this data
set [2]. in which only simple normalizations of the raw data were used for
pre-processing. We use imsupervised BCM [3]. [12]. [11]. [1] [2] Projection
Pursuit networks to extract features from the raw intensity data in four spec-
tral bands after applying simple preprocessing schemes: bands 5 (- 0.4401an).
17 (- 0.(.5581n ). 28 (- 016661un ). 52 (- 0.8631um). ' Preprocessing was
either GLDV. SADH 2, or simple normalization of raw pixel intensity by the
scene dynamic range. Multiple views of data structure from each of the low-
level BCM networks improves classification. Inputs to the individual BCM
networks may be chosen from a variety of patch sizes: in this paper most
experiments used 12x12 and 6x6 input patches.

At higher levels of our model architecture. we obtain pixel-level classifica-
tions by pooling and adaptively weighting projections from ensembles of BC.l
Projection Pursuit networks. To accomplish this, we use the supervised learn-
ing procedure backward propagation (BP) [16] with a cross-entropy (BPCE)
Cost Function [15]. The identity of individual pixels. e.g. cloud vs. no-cloud.
within a particular sub-block of the input patch is the desired output of the
system: network hierarchies may be trained to predict the identities of indi-
vidual pixels in any sub-block within the input patch. A schematic diagramn
of the approach appears in Fig. 1. Error signals for adaptation are gener-
ated by comparing the output of the network hierarchy with that of a human
interpretation mask. Smoothing of multiple estimates of pixel identity can
be accomplished by using BPCE to adaptively weight the output of several
BC'M-BPCE ensemble estimators (ensemble of ensembles) [2]. although this
is not done here.

In [2] and in this paper, the ground truth was taken to be human interpre-
tation masks: these masks required detailed, local analysis and thresholding
over numerous patches within the image frame. AVIRIS image size is 614x512
pixels per band with a resolution of 20m per pixel. Typical ground truth
masks took anywhere from 10 minutes to an hour to generate for each scene,
depending on the complexity. In the present study, there are 17 scenes: in this
study 8 scenes were used for training, 2 for cross-validation during training

1
Calibration of particular scenes in the set varies, and in some cases a neighboring

spectral band was substituted.
2
Several different directions and separations ivere used to compute GLDV and SADH

histograms.
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2 Feature Extraction by Projection Pursuit

In general, Projection Pursuit methods seek to find structure and reduce
complexity in high-dimensional data spaces by discovering a low-dimensional

set of statistically interesting projections [7], [10]. Our particular approach
discovers structure in the data by adaptively minimizing a Projection Index
that favors statistically skew, bi-modal, or multi-modal projections of the
data distribution. Projections are jointly optimized. Our approach is based
on the BC10 model [3], [12],[11]. [1] [2] that has recently been linked [12] to
Projection Pursuit. In the 1CM Projection Pursuit model, the ith projection
in layer n of a multi-layer BCM network is: 3

(i- , Lij'j ) with : a(.r) a tanh(aAx). (1)

If or i =J
Cj = ?'j + b and L - -it, for i L. j

where L() is a fixed constraint matrix, ,zii-•1) is the jth modifiable projec-

tion vector, which weights inputs from layer (n - 1), and b(") is the bias.

aln the present study., BCM networks had only a single layer of projections.
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Projection vectors and biases are modified bY minimizing the cost of the pro-
jected data distribution over the. cost fimuction. ,I (Eq. 2) : this leads to a
sOmi-local Projection Incex. F[, I (Eq. 3) . with no reference to training
labels (misupervisod learninig):

Cost f-unction [-( ( __ 4
3 *1 4

(2)

.lipiimiz: : -(Z ([(3)))i] E-[i)-]
3 4

_o( (o ( l 1) (4)

w'ith :l(?ý .I, ) (ýi -

Vo n) (n)
• i A (a -i ýi - ,. )+

O. Oý is the dynamilc modification threshold above which the response to a

Figure 2: Lef• Tine B(I"I C- . ,nettn', n ,e F-1o, F-n- -, fr,-' ,.

pt',eenn•j t - f" Ie drnnn: hie In..... Iei n ne g ti nn ...... Iind hie -i-e endle , tet hnennn En lnnn7 ,, q ' 0

nine P' r ', •n tndex in obtnaed 1-Inii n izngtie eIli, of 1-e dan pr.oje. ni:n- oernthi• ftal , n lnn fnlan

a net , aea all prjet....... { I ight i tnie o ftn-n- , I , i gle ptoJa-,e anodel. c d- -tll, neb

ninnhene l"e p jecntion -' 11-se - a pnttel nneiitn rfed n nec.akened 1--oed on 0 -1 ie t ,,ie pnr-e

be l,],, 0 e da- rn irt l thi ler lold ,i[,e ti h t n eno ng T i = - - 1. F " 1 2,

4E-- represents the expectation value.
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particular input pattern is reinforced and below which it is weakened in a
single projection model; this can be seen by writing:

_ _ - V 9) dil 'J ( (5(())' i)2 (5)
dt W dt

Thus, the sign of 0, depicted graphically in Fig. 2, determines the sign of
the change in the response to a particular pattern. Typically the expectation
value in Eq. 2 is only approximated as a leaky integrator:

9-() (e2)2(s) ds (6)
T , 0

This minimization procedure biases projection vectors toward directions where
the input pattern distribution is statistically skew or multi-modal when pro-
jected onto them. For a small and decreasing step-size, Equation 4 is well
approximated by stochastic gradient descent [12].

If we examine pairs of these projections in a Projection Pursuit network,
we find that the projected distribution of high-dimensional inputs contains a
rich underlying structure that is useful for cloud detection; two-dimensional
histograms of projections of A\VIRIS band 5 data are shown in Fig. 3.

Figure 3: Two -di-eoitooal histoget of projeoted AVIRIS drat froro Bood 5 (0.4201-) inpat patches

(O5x05pi 6els); 00000 stnple- diswn frOot eight trainiog senoes Iopots were vectos wolsoe elee-te werre

ite -agnit-des of GLDV hittogtram elemets in the (2,0) direction. E•ch axis (tot shown) is the respoose

of aportieolars rojection ftoo pp networ.k Eahr ow of thee histogroos ecrrespods to particulr

pair of projections: (Left col-nk ) projected distribution of 1l 60000 s mples; (middle coltnt) projected

distriotioo of stmple that ,re co- pletely clood free; (right tolomo) projected distributioo of saoples

otootig 50% o tororo clood vereer

3 Pruning BCM Projection Models

A number of researchers have developed methods for adapting the size of the
model structure in non-parametric estimators. In [14] a method is described
for pruning vector elements in supervised adaptive classifiers. Their approach
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A NEW LEARNING SCHEME FOR THE RECOGNITION OF
DYNAMICAL HANDWRITTEN CHARACTERS
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Universit6 Pierre et Marie Curie, Laboratoire PARC,
4 Place Jussieu , T66, 2Sme 6tage, 75 005 Paris, France.
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Abstract. Vector comparison is essential in pattern recognition. Nu-
merous methods based on distance computation are available to
carry out such comparison. Unfortunately, most of them are ap-
plicable only if the vectors are of the same length or do not take
into account components misalignment. This paper presents a new
distance between two representations called the Elastic Distance
and based on the dynamic programming technique. Properties are
studied. We show that it leads to a variant of the Least Vector
Quatisation technique that learns the best representants of a group
of prototypes. A new centroYd computation algorithm is proposed.
Finally, the learning scheme algorithm has been successfully applied
on an on-line numerical handwritten character recognition problem
using a previously computed centroYd of a set of prototypes.

Keywords - Handwritten character recognition, clustering, elastic matching.

I INTRODUCTION

Vector comparison is essential in pattern recognition. Classical distances
deriving from quadratic forms (such as the euclidean distance) are suit-
able tools to perform comparisons. Unfortunately they have a major
drawbacks since not only vectors must belong to the same vector space,
(i.e they must have the same length) but corresponding components
(same rank) must have the same meaning too. These distances can not
cope with a misalignements. Let be given two vectors x = (xi, x2 , ... , X,2)

and y = (Y, Y2, ... , Y,) that are members of vector spaces with in not
always equal to n. To simplify, we will consider the i-th component of x
as the sample at time i and vectors will be treated like signals. If such
a signal is shifted by just one unit of time and compared to the original
non-shifted one, it will appear to be very different with the euclidean
distance. We face here the well known Temporal Alignment Problem
(TAP) that occurs as soon as two signals have to be compared.

This problem has been encountered for a while in the area of speech
recognition and handwritten drawing recognition dealing with data pro-
vided by a tablet digitizer (scripts, sketches and musical score). Three
main classes of solutions are known at the present time to tackle the
temporal alignment problem. These are the Hidden Markovian Models,

0-7803-2739-X/95 $4.00 © 1995 IEEE
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hel( adaptive approaches sten-ecl f'rom Adaptive Filt eriiig ment hods and(
telchniqiies nsiing- Dnlin rgrammining.

All of the tech ai q(iies nlenltion ned above have been proven to Ie very
Ifricielit Inl speeche and l ben/or recognition. Occasionally we ecould fiinlI

Ilhili comibinedl with the Hliddein M~arkov Models or the Dynamnic Pro-
graniinn I1ý tchiiiqiie [2. 31. T1e Hliddcen Nfarkov Models reynire a veIry
I int-eonsmainig learning phiase mnd large nienmory space far the I raining

Moraeover (Ilt a inns1"t complet lv fill Iin thle space of' possi bles. Numner-
mone I it>ired works xhlibit thle great efficiency of thIese models [A. 5.6]
Tim in ,f lav N eural Ne~tworks (lUN N) t echnicque is anot her very jIlterest-

ing ap proach t hiat, circumvntct the temporal alhgnenicit prob leitixvi itonl
solving if straighit flly. Adiaptive approaches [1] such as Predijetive Net
works or the Vector Predicjt ion t echniqicue are also vnld i d et I od s thlit

ralize a kin d of auitomatic locking to deal withI the TAP.) Amiong the
va riotis nlet bode based onl Dyniamic 1Proganmminig wve canl quhot e thle Wag-

ner k Fisher algorit lii [3] for computiing the editing (list atice behtuvee

clia ins and t he lDvn amilc Time WN'arping (DLXV) algori t im wvi li Is a p
pidi elxt( iisivelv inl s.peech recognition. The Elastic D~istance (FIll) wicli
can Ie vie wed as a l)TN variant will be introducedl inl the next i sct loll.

11 TiJF EiAYI~ric DiSTANCT

Let x ý:-(xI. 1 . . . . .x ý. . . . . 1 1) annd y =(/it, .m.,!J ....y) he two s"ignals whnere
lie b lngt is r ani sl. are not, always equal.. Asstuie thle componem itsýx

and .gj io Ibe ve ct ors. wvith xi C lBT and yJ C lR7). Hbere 1) correspoii is to
Imimi( inuher of' parnameters requiired lby a shape represen tatijont. WVe need
two fiinct ionls i f U(ii) aiid j = V"(7 it ii order to control thle t empoial
flow of, componlents of' x and y during thle matching proicess. One( can
lot(e that i ( resp. j) is the index of the componenlt of' X, (x.j). to be
a ikeni into a ccoiinlt a time oi. The underlavin g idea of the elastic distamice

cal cIIlotion is to fiud a patir of funict ions (U., 1,,) suich that thle distance
betweenl xi ~ . lmld yj ill" IS minittal for all1 valtue s of Inde x
ni. '1li sequence of' pairs (i> .V (U(n ), I ( )is called the italh/ivy
pa /h.

First of' all, timle mlust lie allowved to flows differetntly for x and y.
whl e takling 110o accountt the whole components of bothI of the sigma>s.

Ini add(it ion, it scentisto lie reasonnalile toprolmtihit the path Ii rom steppii ng,

haick or i- ilviang omi thle same poitnt dunrinhg the mattcliing. Thiise head to

thie following, conditionls:

(T~ +'ui U(ii) =0 or 1, aind

V n El IN j ( )-Iji orb , and (I

V 11+ )- ~n +1"(n+ -I (n)> 0

One( could inot e t hat . it, wonuld lie perfectly valid to allow skipi hg (as

ini IYIW alg,,orit11hm1), i. e. U(Ii (n 1) I T(n ) > 1. Buti so. we wouli I ( t ave t o

j'wiili.'-e this tN pe of path aiid t his would give iise to the critical probilemn
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of penalities tuning. We must also take into account the fact that U and
V have different boundaries because x and y exhibit different lengths
as signals (i.e. they do not have the same dimension as vectors). Let I.,,
(resp. 1y) be the length of x (resp. y). We impose a second condition :

3n \ U(n) =1 and V(n) = ly . (2)

The integer n is the final time of the matching process (n is obviously

unique). To enforce the fact that n depends on U and V, it will be noted

ov. Among all the possible matchings that verify conditions (1) and (2),
we have to find the optimal one according to a criterium based on the
distances between components matched by the pair (U, V). This includes

all the distances between xu(,) and Yv(,) for n varying from 0 to 1yV.
The critertum could be chosen as

,n uv

rZ=0

for a fixed (U, 17) and where d(.) is a distance over the components. This

znstanianeous distance could simply chosen to be the euclidean distance.

xx

"-j=v~n) •,J
-, ...- d.. ...

-- -( )

/ The matching path

(1,1), (2,1), (3,2), (3,3). (i, j)

Fig. 1. The elastic distance computation and its associated matching path.

III CENTROIDS COMPUTATION

I11.1 Motivations

When a large number of prototypes (reference vectors of a class ,5) is
at, hand, classifying is always hard (time-space consumming) even if it, is
more accurate to use all prototypes. That is the case with the K-Nearest

Neighbors algorithm and especially with the Parzen kernel approach wich
perform a non-parametric estimation of the density of probability of the
vectors for each class, in order to perform a Bayesian classification. Given
N the number of reference vectors, the computation cost is of an order
of O(N). Such calculation can be monumental for a large number of
prototypes. Fortunately, we can take benefit form the intrinsic redun-
dancy of the data. Neural Network techniques afford a wide range of
interesting tools. The Learning Vector Quantification algorithm (LVQ)
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proposed by T. Kohonen [5] substitutes a whole set of prototypes for a
few numbers ones, wich coincid with the centers of the balls that cover
optimally all the classes. Three conditions must be satisfied in order to
find Hiiese centroids :

i. Balls corresponding to two distingable classes nmust be disjoiuln.
We want to avoid ambiguity.

2. Each class must, be covered as much as possible by the balls.
We do not want unclassifiable areas.

3. A minimum number of balls imist be used to get a Maximum speed
up factor. Otherwise one could have taken each of the prototypes as
centers of the balls (i.e. we would have the same number of balls and
prototypes.)

These conditions are obviously hard to get simultaneously.

® centroids

Class BClsA

Fig. 2. Some centroids.

111.2 Centroids Definition

Let x = {;1X, X2, ... , iN} be a set of N points of IR"1. Each point x" is
a n dimensionnal real valued vector. We want to represent the entire set
with a vector g called the ccnlroi'd of x.

Definitionl. The vector g is a p-cmiirofd of x if y minimize the cri-
terium

N

C1,(g) =jrl(g, r1) (4)
i=i

where d(/.) refers to any valid distance defined on IR".

If rl(.) is chosen to be the euclidean distance and p= 2, that is d(/;., y)
Ix - y11 then g is the 2-ceneroid of x, is unique and coincid with the

center of gravity of the set x. In the following, we will assume that p = 2.
Parenthetically it should be pointed out that if the points x' belong to
some space S that does not have a vector-space structure (i.e. clot, product
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is not possible and euclidean distance is not authorized) then one could
nevertheless define and find the 2-centroYd without guarantee of unicity.

The C2 (g) function is continuous and bounded. The lower bound is
equal to zero. Then it admits local minimas. Let go be a regular point and
ao = C2 (go). The centroid g must check in the relation 0 < C2(g) < ao
which means g E C2'([0, a0]). The set g G C2 1([0, ao]) is generally
a compact subset of S (a closed bounded on IRP). Therefore, we are
guaranteed to find at least one minima of C2(g) on S.

111.3 CentroYd Computation Algorithm

The centro'id g will be practically computed by the mean of a gradient
descent based iterative algorithm. In the particular case of the elastic
distance, we set on two hypothesis:

Hypothesis 1. The shapes to be classified are represented by an idenhi-
cal number of components.

Hypothesis 2. The first derivative of the distance in respect of each of
its components exists.

Now, let g be the vector obtained at time t while minimizing the cri-
terium C2(g) i=1 d(g, xi) 2 where g = (gi,...,gj,...,g,) and x=
(Xl, x2, ... , x') a prototype. Taking the partial derivative of C,(g) with
respect to gj,

ac N Od(g, x?)Ogj _ 2 d(g, x' (99- (5)

Let K(j) be the set of indexes k met by the component.s gj along the
matching path during the computation of the elastic distance between g
and the prototype x'. Then

n

d(g, x') - d(gu(k), XV(k)), (6)
k=O

and as seen before, K(j) = {V(k) \ U(k) = j} = V o U- 1 {j}. Finally,

Od(g, 2 )_ x Od(g,4) (x)
Ogj Ogj ()7)g

Now with (p = 2), it can be shown that

ac N
_ = 2 Zd(g, x') Z(g k-4) (8)

j i=1 kEK(j)

This last expression exhibits many similarities with the LVQ algorithm
[5].
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IV CENTIIOYDS COMPUTA'rION ALGORITHM

This section o0t, lines lie new centroYcd computation algorithm using the
lastic distance. The following notations are used within the psenudo-code:

NbProto is tfhe nunber of prototypes, NbCentro is the desired ilnimber
of ceýntroids, a is the learning rate, where 0 < a < 1, e is the stoppilng
thlirshold, ItMax is the maximum iterations allowed. Centroid [k] I-] is

nhe i-t h component of the centro'd number k, DISTANCE(. ) is lie Elastic
Dist ance beotween two vecl0ors and Nuv is the fitial matching time.

[6] I ii rd z~

Choos Nttgentro
71.-, rt-n iihtr[kj f k - ,NbCntro /k =ong proro l *.

-7h~s a, e t, It ý-~

NunmIt 0

[i] i7,-nt i,, . L,i -- roin

[I -a /*D ist .o......[.. .em uaii,

[l-I,] ~~~/* Adaptatio of the ý nrls *

Eolt. the t 'rieriu ;~il( t, -) or (Nnrtl > IttNt ).

Nýon[ I Nuro it + 1; D.NI-x -to
F-,, i = 1_,.N1.~o o

For k = 1.,Nbentro.
,t[k] := DIITANCE(I•r-toypo[i], C,-ntrod[kh]);

Fm I k(i) n-ih that dfk(i)] = Minti- 1[k]:
-t Mi1 Iax(DNIax, ,![k(i)]);

i[ f i, A ,iiL iron of tri ....... troio s|

Si 1.. NbProro.

h : k(i): /* th ,-I- 't 17entr ,,1 fr rt i*/
I DIW.TANCtE( P--13vp,-[i], (- 0rod[k]h :

FO = 1 , ... , ,l

u (, kit)) := MATCHItNG PATtH f (it n1ot[kh &: -t,[ij

--,n~ott-klfhftiii := i -• (, /It)Nar)).F-nrtrl[h][t ir)]
+ r..(,1/D Mtax).P rot,,n p,[i][\ ( r)]

Fig. 3. (oentroids (ompulatlion Algorithm based on the Elastic )isIance.

A detalled impleientation of the cent rol'd comlputation algoril him
is given on F`igure 3. This is actually an on-l/ic variant of' the trie
gradilent ilsceiii algorithi (balc/ incihod) stated in the equat ion (8). Tlie
adaptationi process could le seen as a gradual tweeking of' the centvroidFs
componentst toward lie components of the closest (in thle sense of lhe
elastic distance) prototype. This scheme is carried out at, each it eraltion
for the corresponding components provided by the matching parth.

V TElSs AND RILSULTS

We propose to classify new refereices vectors by compiitiiig the clastic
distance bet ween those new references and the ceit, rold(s) of a giveii set
of reft reti i•s.

V.1 The testbed

AThe pafterns displayed on Figure I are chosen as test bed for the
experiments. Numerical handwrit ten characters have beon drawn on a
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r~efiS ref13 refiS reft13 ref12 refS ref i ref13

ref tdg tefSlS ren 1 m lef , c red a refina refitl t ll2 tedl2

i a s sequnc ri of nt rip to mi nim e e

re ansl refl2 n--i, refn reefvectrs refe s arecl3 refd 3 refc3

d irefis of rte refe menflr res conseive ps.

r24 s cons'is s7 ree grops rots cih

Fig. 4. Sample of numeral handwritten characters used to test the Centroids
Computation Algorithm.

tablet digitizer, then normalized, centered and finally re-sampled to end
in a fixed spaced sequences of points. In order to minirniie the effect

of translations, the actual vectors fer are coded as sequences of
directions of the elementary segments defined by two consecutive points.
The experimental testhed consists of three groups of prototypes char-
acters..' Refl3 (digit "3"), Ref3l3 (another samples of digits "3") and
Refl2 (digits "2"). Refl3 is used for training. Both Refl2 and Refl31.

are used for testing. The centroid computation algorithmn tas rin with
various learning rate (a = 0.05,= 0.1, a = 0.2) and initializations.

V.2 Results
Table 1 summarizes the results for the computations of the centro'id of'

RefA3 class. The standard deviation of the distances between the centrond
and the references in Refl3 decreases dramatically (f0%) within few
iterations. The centrowd is obviously moving toward the middcl of the
class - in the elastic distance sense - as the adaptation takes place.
Learning seems to be faster with greater learning rate.
V.3 Discussions

As shovn in Table 1 the maximum of the distances h etveen the com-
puted centrofd and the references of class Ref3l3 stay far below the
minimum distance between the same centro'ad and the class Refl2 test
pattern. It. can be point out that even with this simple decision process.
the centroed computation and the elastic distance prove to be valuable
tools for classification purpose and prototype compilation.
Unfortunately the elastic distance alone does not provide enough infor-
ination on the exact location of new patterns within the multidimension-
nal space of shapes. It would be desirable to construct a vector composed
of the distances between the new pattern and all the centroids found.
Many challenging questions remains: how to choose the optimal number
of centroifds needed to cover an entire set '? One can for example stop
finding new centroid when two centroids coincid. Actually the choice of
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Table 1. Experimental results for the computation of one centroid of the
refl3 prototypes with (rO) as initial reference.

TRAINING: computation of the centroid of ref 13

Learning rate a = 0.05 a = 0.10 a = 0.20
(f, Iteration 1 23 1 12 1 7
Criterium 1628 1341 1628 1398 1628 1477
max d(centro, ref 13) 3970 2743 3970 2877 3970 3344
mean d(centro, ref 13) 1394 1221 1394 1267 1394 1334

std d(centro, ref 13) 842 555 842 591 842 635

TESTING (1): classification of ref313 using the centro of ref 13
(max d(ref 13, ref313) = 705) (min d(ref 13, ref313) = 524).

pat# d(.) pat# d(.) pat# d(.)

maxd(c13, ref313) (r34) 11329 (r34) 1343 (r34l) 1344
rain d(cl3, ref313) (r8) 770 (r8) 792 (r8) 825

TESTING (2): classification of ref 12 using the centro of ref 13
(max d(ref 13, ref12) = 2630) (min d(ref 13, ref313) = 1764).

pat# d(.) pat# d(.) pat# d(.)
maxd(c13, refl2) (rn1) 4674 (rIl) 4680 (r11) 4675

noin d(c13, ref12) (r13) [38 (r13) 3878 (r13) 3986

Notel: (r#i) refers to the prototype ri according to the labels in Fig. 4.
Note2: c13 is the centroYd of refl3.

initial references have an effect on the final centro'id location. How to
choose the best initial references ?

VI CONCLUSIONS
A new learning scheme that computes from several prototypes a reduced
representation have been presented. Within the context of handwritten
on-line character recognition using the Dynamic Programming approach,

the proposed new learning procedure, wich is a variant of a clusterino
algorithm, reduces a set of prototypes into few centroIds. The centroId
computation algorithm makes an extensive use of the Elastic Distance
that does take into account the matching path between two patterns. It
has been applied successfully on a reduced scale classification l)roblem.
As expected, the adaptive algorithm behaved very well and did not lead
to misclassifications even if distances were modified. We plan to run
more extensive tests in order to exhibit the effects and benefits of the

new scheme.
The proposed learning scheme could be interestingly included in a

monoscriptor character recognition system where the problem is to adapt
each class model of existing muffiscriplor characters to the new samples

feed in by the user. A more complete version devoted to math formulas
recognition and edition is under study and implementation.
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1 Abstract

The transport of granular flow is common to many industrial processes. This
paper discusses a methodology to measure the velocity of dry granular solids down
an inclined chute using high speed digital images. Acrylic particles have been used
as granular solids in our experiment. First, particles are located using normalized
correlation. A technique for measuring the velocities of individual acrylic particles
is developed based on a Hopfield network to solve the particle correspondence
problem between successive images. A new, rigidity constraint is applied to the
Hopfield energy function, and the results show better performance than the
conventional cost function.

2 Introduction

The objective of this paper is to suggest algorithmic methods to measure the
velocity of dry granular solids flowing down an inclined chute under action of
gravity using high speed digital images. Measurements of individual particle
velocities would represent a major advance in understanding the dynamics of
flowing granular materials. One of the challenges in experimental studies is that
there are no standard means of measuring the local velocity of granualr materials
[1], [2], [3].

Laboratory tests are conducted in a flow simulation system which consists of
a 144" x 6" x 18" inclined chute with transparent side walls, a conveyer for
particle recirculation, an upper hopper for granular storage and a lower hopper for
guiding the discharge to the conveyer. We have used acrylic particles of 3 mm in
diameter as granular solids for our experiment. Images have been obtained on a
system which takes digital video images up to 1000 frames/ sec. with 239 by 192
resolution. The images have been taken from the side wall.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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We propose a method for velocity measurements of individual acrylic
particles. This method, first, locates the positions of particles with variance
normalized correlation as a pattern recognition technique, followed by a clustering
technique, which produces point patterns. Then, correspondence between
successive point patterns is solved by a Hopfield network for the velocity
measurements of individual particles.

3 Velocity Measurement of Acrylic Particles using
Point Correspondence

The variance normalized correlation is proposed here to detect acrylic
particles in images. This process also identifies particle locations. Some
modifications are made to the variance normalized correlation [4] in order to
extract the image data of a particle centered at the mask and to attenuate the image
data between the boundary of the particle and that of the mask.

II Lf '(x, y) -f (x ,y)] [W' (x -m, y -n) - W']

r'(m,n) = x y (( Eq.1)

[(f'(x,y)-f'(xy) ] Y)-[w'(x-my-n)-w']

InEq. 1,f'(x,y) = g(x,y)f(x,y) and w'(x,y) = g(x,y)w(x,y) wherew

is the average intensity of the mask, f'(x, y) is the average value of f'(x, y) in the
region coincident with w (x, y). The kernel g (x, y) is a 2-D Gaussian function
with appropriately chosen standard deviation such that it's distribution has the
same size as a particle in our images. The r' (m, n) ranges from -1 and 1,
independent of changes in the amplitude of f(x, y) and w (x, y).

This method is applied to two successive images of flowing acrylic particles,
as shown in Fig. 1. The camera is tilted such that the chute base is parallel to the
horizontal edge of the images. Particles move leftward in this setup. The image A
precedes image B by a sampling time of 1 msec. The image size is one fourth of
total image (119 by 96). Fig. 2 shows the correlation output from image A with a
threshold of 0.985. This result is produced with the template labelled 't' in image
A. The standard deviation of the 2-D Gaussian function is 2.5. Each contour
corresponds to a correlation output greater than 0.985. Since the variance
normalized correlation is independent of amplitude changes in the brightness
pattern of both the template and the image area coincident with the template, it
produces comparable outputs for particles with differing brightness. Fig. 2 shows
that a single template containing the typical brightness pattern of a particle is able
to recognizes particles that can be perceived by the human eye.
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In order to locate the particle, a search for a point that has a maximum
correlation value among the points inside each contour is implemented. The
location of the maximum correlation will define the coordinates of the particle
center in the image. Since one particle diameter is typically 12 pixels, and particles
are densely packed, a clustering technique [5] is applied to group points of high
correlation such that the distance between a point and its corresponding clustering
center is less than a cluster distance of 5 pixels. Then, the locations that have
maximum value of correlation output in every group are searched for. Fig. 3 shows
the resultant point pattern for image A (circles) and image B (crosses).

Most particles in one image have correspondence in the other image, however
some particles are not detected, or they may have moved away from the field of
view. These missed detections are caused by noise in the images and particle
occlusions. We will discuss now how to make the correspondence between two
point patterns that do not have perfect correspondence.

0/1

Figure 1 Two successive images: left - image A, right - image B
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Figure 2 Correlation output from the image A
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Figure 3 Point patterns detected in successive images

4 Point correspondence with Hopfield networks

Many approaches have been attempted for solving the correspondence
problem such as graph matching [6], or relaxation techniques [7, 8]. These
methods measure the compatibility between prototype features and the image
features to obtain the best solution. The problem associated with the conventional
graph matching is computationally complexity. The relaxation technique is
inherently a local optimization method, and it is sometimes difficult to determine
a suitable update rule for the relaxation algorithm. However, a neural network can
be employed for the correspondence problem by formulating it as a constrained
optimization where all the constraints on the solution can explicitly be included in
the cost function. Minimization of the cost function can then be achieved by a
recurrent network such as the Hopfield network.

The point correspondence problem has been formulated as a constrained
optimization where the cost function (i.e., the energy function in the Hopfield
network) representing the constraints on the point correspondence problem, is
minimized [9, 101. To solve the correspondence problem, we construct the energy
function in the form of equation (2), whose local minima correspond to solutions
for the point correspondence

M N M N M N
E = -• ý Z E Z Txi, yjVxi Vyj- Z I Vxi/xi-Eq.'2

x= 1i= ly= lj= I x= 1i= 1

where T are the connection weights, V the node activations, I the external
input, and M and N are the number of processing elements in a row and column
respectively.

It is assumed that the 2-dimensional coordinates of points from two successive
images have been obtained and denoted by A = {a 1, a2, ' , aN},

B = {b 1, b2, , bM} . The dynamics of the processing elements arranged in
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a matrix converge to the stable state corresponding to the best point matching. The
output states of a M x N permutation matrix V, whose rows refer to point pattern
B and columns refer to point pattern A, is interpreted as

V i= F1 if there is a match between A and B

L0 otherwise

This means that there can be at most one "1" output in each row and column.
If there is no correspondence for a given point in one image to the other image, the
corresponding row or column will have only zero entries. Calculating all distances
among points between two patterns produces a MxN distance matrix
dAB = {dAB (x, i) }. Likewise, calculating all distances among points within
each pattern produces a NxN distance matrix dA = {dA (ij)} and MxM

distance matrix dB = {dB(x,y)}. Since images are taken fast enough to
guarantee that the displacements are less than the diameter of a particle, the point
correspondence is found under the constraint that the sum of displacements
between matched points is minimized.

This method was tested with real images and failed to converge to the global
solution many times. A new constraint called the rigidity constraint was
incorporated in the cost function. The rigidity constraint requires that the distance
dA (ij) between points i and j of pattern A should equal the distance dB (x, y)

between matched points x and y of pattern B, respectively. Based on the above
discussion, we construct the following extended energy function,

C1 M N N C2 N M M

2 VxiVxj+ xV- VxiVyj
x= 1i= lj#i,j= 1 i= Ix= ly #x,y= 1

C3 M N 2 C4 M N
+ 2-•x V Vi- Nj + 2• Y-' Vxi daB (x, i:

= 1i= 1x= 1i= 1

C 5 M M N N

+ - V ijdA(ij) -dB(x,y)[Eq.(3)
x= ly4x,y= 1i= lj4i,j= 1

the minimum of which corresponds to the best match. The first term equals
zero if and only if there is no more than one "1" at each row of V, which means
that one point in pattern B is not allowed to be matched to more than one point in

pattern A. The second term equals zero if and only if there is no more than one "1",

at each column of V. The third term equals zero if and only if there are N1 entries
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of "1" in the matrix V. The fourth term refers to the minimization of the sum of
displacements between corresponding points, and the fifth term refers to the
rigidity constraint. C1 through C5 are constants experimentally determined [11].
We experimentally set Nl=min(M,N)+2. Comparing Eq. (2) with Eq. (3), the
connection matrix turns out to be

T. yj = -C1 xy(1-.i.)-C 2 .ij(1- -xy)-C 3- (Eq. 4)

C5 (1 - 5XY) (1 - aij) IdA (i,j) - dB (x, y)J

where 5.. = 1 if i = j and 0 otherwise.The external input is

Ixi = CN1I - DdAB (x, i)

The outputs of the stable state of the above system, that correspond to the
global minimum of the energy function, give the solution for the correspondence
problem. Two points must be discussed. First, an energy function with a sum of
terms normally produces an energy landscape with saddle points or even local
minima. However, here it is more important to constrain the possible solutions such
that the network can reach acceptable solutions. The rigidity constraint may seem
to conflict with the particle motion, however we expect that the rigidity is
maintained between successive frames to some extent due to the high speed images
and the particle flow characteristics. The advantage of the rigidity constraint is that
it decreases the probability of being caught in local minima during relaxation. A
series of experiments that went beyond the scope of this paper monitored the
performance of correspondence with and without the rigidity constraint [ 11 ]. They
showed that the performance with the rigidity constraint was far better, providing
almost always the right solution.

4.1 Experiments of point correspondence using
the Hopfield network

The point patterns in Fig. 3, obtained with our preprocessing, are used for this
experiment. There are four points in the patterns (one marked by circles and three
marked by crosses) that have no correspondence due to the image edges, noise in
the images and occlusions of particles. The number of circles is 39, and the number
of crosses is 41. Since we have lots of points in both patterns, the computation time
to obtain a final solution would be large if we compute the correspondence with the
total number of points. In order to speed up the computation, we tried a windowing
scheme over the patterns. The total pattern area is divided into four rectangular
areas such that neighboring areas overlap each other by 10 pixels. The diameter of
a particle image is typically 12 pixels. The images are taken with sufficient speed
to ensure that particles move less than one diameter between successive images.

385



This scheme provides correspondences for the missing points caused by the
boundary of the rectangular area because the correspondences are updated as the
rectangular area is shifted with the overlap. The initial values are selected with a
random number generator in the range of - 0.5 to 0.5, which is shown to produce
good convergence. The following parameter values were found appropriate for our
images.

A = B = 500 E = 73

C = 800 D =160

N1 = min(M,N) +2

Fig. 4 shows that the correspondence is solved for all points including missing
points, as expected, and the velocity field for each particle is derived with one pixel
resolution.

go- hon. velocity: 72.5 cm/ sec
veil, velocity: 2.5 cm/ sec
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Figure 4 Velocity field for the particles of Fig 3.

The results of the correspondence obtained with this method were validated in
many artificial images (points in a grid), and the method always found the correct
solution. We also collected images from a spinning wheel with glued acrylic
particles, and the method always performed perfectly.

5 Conclusion

We propose digital image processing to estimate the velocity of grains flowing
down an inclined chute under the action of gravity. A symbolic-token based
matching technique is proposed for the measurements of individual acrylic particle
velocities, in which the points corresponding to the locations of particles are taken
as the symbolic representation. The particles are located with the variance
normalized correlation using a 2-D gaussian function to extract the particle from
the image data, and the clustering technique to produce a point pattern. The
correspondence between point patterns in successive images is formulated as a
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constrained optimization problem, and solved by the Hopfield network.

Our experiments show that the added rigidity constraint in the energy function
provides a more robust solution to the correspondence problem. The parameters of
the energy function must be set experimentally at this point. Further testing of the
method is under way, but we have successfully quantified velocity profiles in
granular flow with this method.
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ABSTRACT A novel image interpolation scheme is presented,
in which a neural network is used to segment the image according
to the presence of oriented edges; a set of different directional
adaptive filters then interpolate the image, the filter outputs being
weighted according to the neural network output. The filters are
designed in order to accurately reproduce both smooth areas and
sharp edges.

In the paper, the structure is presented and the neural network
and the directional filters are described. Simulation results show
that both objective and subjective image quality obtained by the
proposed method are higher than using linear interpolators.

1 INTRODUCTION

Image interpolation is an important field of research in image processing.
There are several applications where an accurate expansion of an image is
needed, e.g. in medical imaging (to zoom on details which can correspond
to pathological tissues) and in cartography (to obtain accurate maps from
satellite data). Image expansion is also one of the key steps in pyramidal
coding, which is an efficient method used to code images: its features include
low bit rate, multiresolution approach (useful e.g. in progressive transmission
or in multimedia applications), and absence of artifacts (which in turn may
be present in block-based techniques).

Several linear [6] and nonlinear [4, 8, 2, 3, 10] algorithms have been pre-
sented in the literature. However, they generally smooth the edges, so that a
blurred image is often obtained. Cubic spline interpolation also tends to add
an overshoot in presence of steps [9], with a consequent ringing effect along
the border of the objects. It is then interesting to develop algorithms which
are able to accurately reconstruct the edges in order to give sharp images
with good subjective quality. In [9], an interesting interpolating scheme is
proposed, which is based on the minimization of a suitable functional using

0-7803-2739-X/95 $4.00 © 1995 IEEE
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Figure 1: Block diagram of the proposed interpolating scheme.

maximum a posteriori estimation according to a bayesian approach.

In this paper, a two-step algorithm is proposed where a neural network

(NN) segments the image according to the presence and the orientation of
object contours; then, several adaptive filters, controlled by the NN outputs,
actually interpolate the image by smoothing the flat zones while preserving

the sharp edges.

In the following sections, we first describe the proposed filtering structure,
then we give more details on the neural network training and on the adaptive
filters used. Some simulation results are then presented, which demonstrate

the good objective and subjective quality of the obtained images. We also
show the effectiveness of the proposed scheme in a pyramidal-based coding

scheme.

2 THE ALGORITHM

The block diagram of the proposed interpolating scheme is presented in Fig. 1.

The low resolution image is scanned using a 4 x 4 window. For each
window position, the gray values of its pixels are fed into a 16-input 4-layer
perceptron. The neural network has 6 outputs, and has been trained in order

to recognize fiat zones (first output), oriented edges (i.e., horizontal, vertical,
and according to the two main diagonals) and "uncertain" situations as very

small details or edges not centered in the mask (sixth output). The use
of a neural-based algorithm for edge recognition is expected to give better
performances with respect to classical gradient-based techniques, especially

in presence of noise.

If an interpolation factor equal to 2 is used, the data in the 4 x 4 window
have to be expanded into a 7 x 7 square (see Fig. 2), but only its 9 central
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Figure 2: Each 4 x 4 block of the input image is expanded into a 7 x 7 block.
b, d, c, f, and h are the pixels to be evaluated, the others being already

known.

pixels (referred to as a to i in the figure) are to be estimated, the other pixels
being considered when the window is moved to the appropriate position.

WVe copy the four pixel at, the corners of the central square (i.e., a, c, g and

i) from the input image. To evaluate the other 5 pixels (b, d, e, f, and h) 6
different filters are used, which are specialized for the six different situations
mentioned above; their output is weighted according to the outputs of the
NN. For example, if a vertical edge is encountered, the NN-which hopefully
recognizes it-activates the corresponding output, so that only the output of
the filter dedicated to vertical edges is used to reconstruct the output image.
In case of intermediate situations, the NN partially enables more than one
output, so that a weighted mean of several filters is computed.

It has to be noted that while pixel e is estimated only once, this is not true
for the other pixels, which are estimated twice. For example, the pixel below
e is considered as h when processing the block considered in the figure, and

as b when dealing with the corresponding block of the following line. This
is taken into account by assigning to the output image the mean of the two

estimates.

In the following, some details are given related to the perceptron training

and the adaptive filters.

2.1 Perceptron training

As already mentioned, a multilayer perceptron is used in order to segment
the image according to the presence and orientation of edges. More precisely,
we use a 16 x 25 x 25 x 6 perceptron [7] with sigmoidal activation function and

bias. We set to 25 the number of nodes in the two hidden layers as a com-
promise between efficient pattern recognition and reasonable computational

complexity.

The NN is trained using the classic backpropagation algorithm with mo-

mentum [7]; weights are set to random values during initialization. The
training set is composed of 2000 synthetic 4 x 4 image blocks of the already
mentioned 6 types: flat, 4 oriented edges, and uncertain zones. Flat blocks

390



Figure 3: Example of blocks taken from the training set: flat, horizontal,
vertical, diagonal (two edges at 450 and two edges at 1350), and uncertain

zone blocks.
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Figure 4: Multi-layer perceptron training: mean output error versus training
time for a 16 x 25 x 25 x 6 NN, with (solid line) and without (dashed line)
weight perturbation.

are obtained giving the same random value to all its 16 pixel, and subse-
quently summing some low amplitude random noise. Horizontal and vertical
edges are generated similarly, but two different values are used for the two
halves of the block. For the diagonal edges the process is analogous, but two
possible edge positions (over or under the diagonal) have to be considered.
Uncertain zone blocks are obtained using random values. An example of
blocks taken from the training set is shown in Fig. 3.

In order to increase the probability of escaping from local minima, we also
add some noise to the learning process by slightly perturbing the weights
after each update; similarly to what is done in simulated annealing mini-
mizations [5], the noise is progressively reduced while the training proceeds.
The training convergence is shown in Fig. 4, where the mean output error
is plotted versus learning time for the two cases (with and without weight
perturbation). We experimentally found that, in this specific problem, net-
works with fewer inner nodes (e.g., 16 x 15 x 15 x 6) do not converge to a
reasonably good local minimum.
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2.2 The adaptive filters

As already mentioned, six different filters are used for the image interpolation

process.

When a flat, zone is recognized, a linear low-pass (w, = 0.5) filter with a
5 x 5 mask is used. A 3 x 3 linear filter is also used in case of uncertain areas:

if no other information is available, it is reasonable to use a very small mask

of the type
12

-- 2 4 2
1 2 1

in order to take into account only pixels which are very close to those which

are being interpolated.

The edge reconstruction is more complex. We assume that the low resolu-
tion image has been generated by low-filtering and down-sampling a higher

resolution image. This is actually what is explicitly done in a pyramidal cod-
ing scheme; however, even if no higher resolution image exist (e.g., in medical
imaging or in cartography) a low pass filter is-or should be used before

sampling, in order to reduce aliasing.
When an edge has to be interpolated, there is an uncertainty about its

exact position (1 pixel for horizontal and vertical edges, and 1/2 pixel for

diagonal ones). We designed some nonlinear filters which estimate the exact

position of the edge and reconstruct and possibly enhance it.

Let us consider the one-dimensional case for simplicity, with reference to
Fig. 5. The task is to accurately reconstruct the central element of a 7-
element window (reduced to 4 elements after decimation) in which a step is
present.

In row A, the step is considered in the two possible cases of interest, which

will be referred to as "even" (column a) and "odd" (column b) position. The

other possible positions, more at the right or more at the left, should be taken
into account when the window is shifted by two (by one for the decimated

data); indeed, in these cases the NN recognizes them as uncertain situations,

and the outputs related to oriented edges are not activated.

After low-pass filtering (row B) and decimation (row C) some information
has been missed. However, the position of the original step may be guessed by

considering the decimated data d(i), i 1 ... 4: if ld(2) - d(1)I < Id(4) - d(3)1
then the step position is even, otherwise it is odd. Consequently, the value of

the central element may be set closer to d(2) or d(3) in case of even or odd
position, respectively. In the particular case of the figure, for example, it is

possible to set it equalto d(2) or d(3), being Id(2)-d(1)I = 0 or ]d(4)-d(3)1

0 in the two cases. The result is a reconstructed edge which is much sharper

than using linear interpolation.

The extension to the two-dimensional case is rather simple, even if four

possible step orientations have to be considered (horizontal, vertical, and
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Figure 5: Example of edge reconstruction in the one-dimensional case, for

an "even" (a) and "odd" (b) step position (see text);'o': known pixels; 'x':
pixel to be evaluated.

according to the two main diagonals).

It has to be observed that, being only the decimated data available, there

is no way to distinguish between a step which has been smoothed by the low-

pass filter and a gentle slope in the original data, which is therefore incorrectly
sharpened. However, it is generally acknowledged that a moderate increase

in the image contrast (with noise being kept controlled) is beneficial to the
subjective quality; this is by the way the rationale of various unsharp masking

algorithms [6] which may be found in the literature.

3 SIMULATION RESULTS

We tested the proposed algorithm on several 512 x 512 images ("Lenna", "air-
port", and "pentagon"), which have been decimated after low-pass filtering

with a linear FIR filter with w, = 0.5. In Tab. 1, the mean square error (mse)
in the reconstructed images are reported in case of linear interpolation and
using the proposed method; it may be noticed that a significant reduction in

the mse is obtained with our technique.

More results are reported in the following, which are related to the image
"Lenna".

In Fig. 6, the activation of the six NN output nodes is reported. It may
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Table 1:
COMPARISON OF DIFFERENT INTERPOLATION SCHEMES

Image mse (linear interp.) mse (proposed scheme)

Lenna 45.0 44.3
Airport 155.3 146.1

Pentagon 87.7 80.1

be seen that the NN accurately locates the oriented edges. The robustness
of the edge extraction with respect to noise is shown in Fig. 7, where a
comparison with a gradient-based edge technique is presented; for simplicity
only the vertical edges are considered (similar results are obtained for the
other orientations). It is apparent that gradient is more sensitive to noise.

As already mentioned, the proposed interpolating scheme should result in
"a higher visual quality with respect to linear interpolation. In order to allow
"a better comparison, in Fig. 8 only a detail of the test image is reported,
together with the output of the two methods. It may be noticed that the
presence of sharper edges improves the subjective quality of the image.

We also present an application of our algorithm in the field of image coding,
and in particular within a pyramidal coding scheme [1]. More precisely, we
replace the linear interpolation in the lower (higher resolution) layer with the
proposed algorithm: thanks to the good subjective image quality that can
be obtained, the corresponding error image may not be transmitted, with a
consequent substantial bit rate reduction. In Fig. 9, the resulting image is
reported: bit rate is 0.13 bpp, and PSNR is 27.41 dB. The PSNR is not quite
high, but the visual quality of the image is good due to the presence of sharp
edges.

4 CONCLUSIONS

We presented an image interpolation algorithm which uses a neural network-
based classifier to recognize perceptually significant parts of the image. The
information of the classifier is exploited to control the operation of several
filters, so that an edge-preserving (or even edge-enhancing) interpolation is
obtained.
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Figure 8: Detail of the test image: (a) decimated image, (b) linear interpo-
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Figure 9: "Lena" compressed at 0.13 bpp using pyramidal coding; PSNR is
27.41 dB.
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Abstract

We present a distribution-based modeling cum example-based learn-
ing approach for detecting human faces in cluttered scenes. The distribution-
based model captures complex variations in human face patterns that
cannot be adequately described by classical pictorial template-based
matching techniques or geometric model-based pattern recognition schemes.
We also show how explicitly modeling the distribution of certain "face-

like" non-face patterns can help improve classification results.

1 Introduction

Finding human faces automatically in a cluttered image is an important first
step to a fully automatic face recognition system. It also has many poten-
tial applications ranging from surveillance and census systems to human-
computer interfaces. Human face detection is difficult because there can be
huge variations in the appearance of face patterns. Because many of these
variations are difficult to parameterize, traditional fixed template pattern
matching techniques [2] [3] and geometrical model-based object recognition
approaches [1] tend to perform inadequately for detecting faces. Some non-
parametric approaches [6] [4] have been recently proposed for representing
and detecting face patterns, but so far, they have only been successfully
demonstrated on images with little background clutter.

This paper describes an example-based learning approach for finding un-
occluded vertical frontal views of human faces in cluttered scenes. To cap-
ture the full range of permissible variations in face patterns, the approach
synthesizes a distribution-based model of frontal face views from an exam-
ple database of face images. In order to perform pattern matching with the
model, it learns a set of classification thresholds and parameters for separat-
ing "face" and "non-face" patterns, based on a set of distance measurements
between the test pattern and the model.

0-7803-2739-X/95 $4.00 © 1995 IEEE
398



(a)
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Figure 1: (a): A "canonical" face pattern. (b): A 19 x 19 mask for elimninating near-
boundary pixels of canonical face patterns. (c): An example of a naturally occuring
pattern that resembles a human face when viewed in isolation, but is clearly not a face
when viewed in the context of its enviromnent.

2 System Overview and Approach

Our approach finds faces by searching the image for square patches of the
human face, whose upper boundary lies just above the eyes and whose lower
edge falls just below the mouth (see Figure l(a)). We shall henceforth refer
to square patterns of this general structure as "canonical face patterns". The
search for these face-like window patterns is done over multiple scales. At
each scale, the image is divided into overlapping square windows of the current
size. The system then attempts to classify the enclosed image pattern under
each window as being either "a face" or "not a face" of the current scale, by
matching the enclosed pattern with our face model.

Clearly, the most critical part of our system is the algorithm for clas-
sifying window patterns as "faces" or "non-faces". Section 3 describes the
distribution-based model for representing face patterns. Section 4 describes
the distance measurements for matching new window patterns to the model,
and the decision procedure for classifying window patterns based on their dis-
tance measurements. In Section 5, we analyze our face detection technique
and evaluate its performance.

3 A Distribution-based Face Model

Our distribution-based modeling scheme tries to represent canonical faces as
the set of all masked 19 x 19 pixel patterns that are canonical face views.
Suppose we apply the mask of Figure 1(b) to each 19 x 19 image and treat
each unmasked pixel as a vector dimension, then the class of all masked
19 x 19 images forms a vector space whose dimensionality equals the number
of unmasked image pixels. Each masked 19 x 19 image pattern maps to a
specific vector space location, and the set of all 19 x 19 pixel canonical face
patterns maps to a fixed volume in this multi-dimensional vector space. So, in
theory, one can model the class of all canonical face views by identifying the
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portion of this multi-dimensional vector space that corresponds to canonical
face patterns, and representing the region in some tractable fashion.

Figure 2 explains how we approximate the volume of canonical face pat-
terns with limited data. Basically, we use a reasonably large example database
of 19 x 19 canonical face patterns to obtain a coarse but fairly reliable repre-
sentation of the actual canonical face manifold. We also use a carefully chosen
database of non-face patterns to help refine the manifold representation by
explicitly carving out regions around the "face" sample distribution that do
not correspond to canonical face views. We shall explain how we synthesize
our special database of "non-face" patterns in Section 3.2.

3.1 Modeling the Distribution of "Face" Patterns

We use a database of 4150 masked canonical "face" patterns to infer the vol-
ume of face views in our multi-dimensional image vector space. The database
consists of 1067 real face patterns and 3083 virtual [5] face patterns, artifi-
cially generated from the real patterns via some simple affine transformations.
The virtual patterns help ensure that our final database contains a reasonably
dense and representative sample of canonical face patterns.

We approximate the "face" pattern distribution in a piecewise-smooth
fashion using 6 multi-dimensional Gaussian clusters. Each Gaussian cluster
consists of a centroid location and a full covariance matrix that describes the
local data distribution around the centroid. The 6 clusters are obtained by
performing elliptical k-means clustering on the "face" sample distribution (see
[7] for details). The elliptical clustering algorithm differs from the traditional
k-m7eans algorithm in that it fits full covariance Gaussian clusters instead
of isotropic Gaussian clusters to the data distribution. It approximates the
"face" data distribution more closely with the same number of clusters, be-
cause locally, the "face" data distribution can be several orders of magnitude
more elongated in certain image vector space directions than others.

The piecewise-smooth modeling scheme serves two important functions.
First, it generalizes by applying a prior smoothness assumption to the ob-
served "face" data distribution. Second, it serves as a tractable scheme for
representing an arbitrary data distribution by means of a few Gaussian basis
functions.

3.2 Refining the "Face" Distribution by Modeling "Non-
Face" Patterns

There are many naturally occuring "non-face" patterns in the real world that
look like faces when viewed in isolation (see for example Figure l(c)). Because
we are coarsely representing the canonical face manifold with 6 Gaussian
clusters, some of these face-like patterns may even be located nearer the
"face" cluster centroids than some real "face" patterns. This may give rise
to misclassification problems, because in general, we expect the opposite to
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Figure 2: Our distribution-based canonical face model. Top Row: We use a

representative sample of canonical face patterns to approximate the voime of canonical

face views in a masked 19 x 19 pixel image vector space. We model the "face" sample
distribution with 6 multi-dimensional Gaussian clusters. Bottom Row: We use a
selection of non-face patternS to help refine the boundaries of our Gaussian ndxture
approximation. We model the "non-face" sample distribution with 6 Gaussian clusters.

Our final mdel consists of 6 "face" clusters and 6 "non-face" clusters. Eachw cluster is
defined by a centroid and a covariance matrix. The 12 centroids are shown on the right.

Note: The two distribution plots are fictitious and are shown only to help with our

explanation. The 12 centroid images are real.
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be true, i.e. face patterns should lie nearer the "face" cluster centroids than
non-face patterns.

We use our elliptical k-means algorithm to obtain 6 "non-face" clusters
and their covariance matrices from a database of 6189 face-like patterns.
The database was incrementally generated in a "boot-strap" fashion by first
building a reduced version of our face detection system with only "face"
clusters, and collecting all the false positive patterns it detects over a large
set of natural images without faces.

Our final distribution-based model thus consists of 6 "face" clusters for
coarsely approximating the canonical face pattern manifold in the image vec-
tor space, and 6 "non-face" clusters for refining the manifold by carving out
non-face regions in the image vector space near the "face" clusters.

4 Matching and Classifying Patterns with the
Model

To detect faces, our system resizes each candidate window pattern to 19 x 19
pixels and matches the resized pattern against our distribution-based face
model to obtain a set of "difference" measurements. A trained classifier
determines, based on the set of "difference" measurements, whether or not
the test pattern is a frontal face view.

Each set of "difference" measurements is a vector of 12 distances between
the test window pattern and the model's 12 cluster centroids in our multi-
dimensional image vector space. One can interpret our vector of distances as
the test pattern's displacement from 12 key reference location on the canonical
face pattern manifold, and hence as a crude "difference" notion between the
test pattern and the entire "canonical face" pattern class.

We use a 2-Value metric to encode the distance between the test pattern
and a cluster centroid. The first distance value is a directionally dependent
Mahalanobis distance between the test pattern and the cluster centroid, in a
vector sub-space spanned by the cluster's 75 largest eigenvectors. This com-
ponent computes a normalized pattern difference along the major directions
of the local data distribution. It ignores pattern differences in the smaller
eigenvector directions where the eigenvalue estimates are poor.

Let 5 be the column vector test pattern, fi be the cluster centroid, E7 5 be
a matrix with 75 columns, where column i is a unit vector in the direction
of the cluster's ith largest eigenvector, and W7 5 be a diagonal matrix of the
corresponding 75 largest eigenvalues. The covariance matrix for the cluster's
data distribution in the 75 dimensional sub-space is r75 = (E75W75E' ), and
the first distance value is:

1
V i (5ý, fi (75 In 27r + In IE~ Y-5 75-•T}: : -•)

2 .

The second distance component is a standard Euclidean distance between
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the test pattern ;F and its projection x in the 75 dimensional largest eigenvec-
tor sub-space. It is a robust directionally independent measure that accounts
for pattern differences not captured by the first component.

D 2(i, 1) 1(- i)I-)I= I I1(I -E75E's)(i -T)ll-

We use a multi-layer perceptron (MLP) net to classify new window pat-
terns as "faces" or "non-faces", based on their vector of distance measure-
ments to the 12 cluster centroids. The net has 12 pairs of input terminals
(for the 12 pairs of distance values) and one output node that returns a '1'
for "face" patterns and a '0' otherwise. Our experiments show that the num-
ber of hidden units and network connectivity do not significantly affect the
classifier's performance. We trained the net on a database of 4150 "face"
patterns and 43166 "non-face" patterns. The non-face patterns include the
6189 face-like patterns used by our model for synthesizing the "non-face"
distribution. The net was trained with a standard backpropagation learning
algorithm until the output error stabilized at a very small value.

5 Results and Performance Analysis

Figure 3 shows some sample face detection results by our system. The system
operates on window sizes of 19 x 19 pixels to 100 x 100 pixels at width incre-
ments of 120%. "Face" window patterns are marked with an appropriately
sized dotted box in the output image. Many of the faces in Figure 3 are en-
closed by multiple dotted boxes because the system has detected those faces
either at a few different scales or at a few slightly offset window positions.
The results show that the system (1) does not make many false positive errors
(none in this case) even for fairly complex scenes, (2) detects faces success-
fully at different scales, and (3) detects real faces as well as hand-drawn faces.
The system has a 96.3% face detection rate on a test database of 301 high
quality CCD images of real people, and rarely makes any false detects, even
on images with very cluttered background patterns.

We conducted the following experiment to determine the importance of
"non-face" clusters in our distribution-based face model. We built two new
systems: the first with 12 "face" clusters and no "non-face" clusters, and
the second with only 6 "face" clusters. Table 1 compares the performance
statistics of the two new systems with that of our original system. As ex-
pected, the original system with "non-face" clusters clearly out-performs the
two systems without "non-face" clusters in terms of having a higher detec-
tion rate and fewer false positives. This suggests that the "non-face" distance
measurements are in fact a very discriminative set of additional features for
face pattern classification.
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Composition of Clusters in Model
Classifier 6 Face & 12 Face 6 Face

Architecture 6 Non-Face
Multi-layer Perceptron 96.3% 3 85.3% 21 59.7% 17

Single Perceptron 96.7% 3 52.1% 6 66.6% 25

Table 1: Summnary of performance figures for experiment on importance of "Non-
Face" clusters. Detection rates versus number of false positives for different classifier
architectures and composition of clusters in distribution-based model. The two numbers
for each entry are: Left: detection rate on the test database of 301 high quality images.
Right: total number of false positives for the test database.

6 Conclusion

We have successfully developed a distribution-based modeling cum example-
based learning technique for representing and detecting frontal views of hu-
man faces in images. The distribution-based model captures pattern varia-
tions in face images that are difficult to parameterize using traditional pat-
tern matching and object recognition techniques. We believe that the same
distribution-based modeling cum example-based learning methodology can
be easily extended to take on feature detection and pattern recognition tasks
in other problem domains.
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Abstract - This paper presents a novel approach to the recognition of
images or scenes, by associating human perception actions to them and
introducing neural network architectures that are able to learn the
derived representations. The approach, is related to recent research
efforts towards a deeper understanding of human information
processing and uses appropriate recurrent neural networks for
generating the desired associations in time varying environments. Initial
results obtained when applying the proposed approach to the problem of
recognition of images of objects, that are deformed and/or corrupted by
noise, are very encouraging.

1. INTRODUCTION AND PROBLEM DESCRIPTION

There is presently increasing pressure to develop an effective approach to
Machine Intelligence (MI). This arises from numerous areas: the increasing
load of complex information traversing the internet and other communication
networks, the possibility of achieving more effective human/computer
interaction, the need to develop autonomous agents to visit hostile
environments, or the creation of robots able to recognise their environment
without human intervention and to collaborate effectively with each other.

At the same time, and clearly with a close relationship to the above demands
for MI, pressure has developed to obtain a deeper understanding of human
information processing (HIP). Since the human brain is the best (and only)
known version of an intelligent machine (intelligent, that is, at the highest
level) then this avenue of investigation is not one to be neglected in the
pursuit of MI. One of the basic barriers in this area is that of understanding
meaning. This can be seen to arise in many fields. Thus, one of the main
problems of human computer interaction (HCI) is that of giving meaning to
messages emitted by humans, as well as interpreting in a human-based
linguistic system the states of the machine. In communication networks the
contents of the symbols being transmitted need to be given a semantic
structure, so that compression and regeneration of noisy signals can be

0-7803-2739-X/95 $4.00 © 1995 IEEE
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achieved using higher-order meanings of messages. In order to develop an
autonomous robot it appears necessary to be able to allow it to create a higher
order representational system in order to be able to manipulate the object
representations it builds up in its explorations of its environment.

These pressures indicate the need for the development of a general theory of
semantics, which would give meaning to the symbols being used by humans
about their experience in the real world and allow a machine to develop a
relevant semantics of its own experience. There is presently no accepted or
effective theory of this sort, nor one which linguists or those involved with
HCI are able to use. In particular there is no way of developing such a
semantics, so as to be able to use it in a variable environment [1].

The new approach proposed in this paper includes the development of an
'action'-based structure for input processing in image recognition problems.
According to it, visual inputs are to be encoded simultaneously, for example,
with eye movements so as to give a conjoined pattern-eye movement
sequence record. Other actions, such as movements in relation to visual
patterns (as occur in obstacle avoidance), can also be simultaneously
encoded. Such techniques are already under analysis [2], [3] and are proving
effective in visual target recognition. Action-based imagery (analogous to
REM sleep) can be viewed as a method of developing suitable object
representations, in which the action-dependence is reduced. The target is to
develop a representational system which is rooted in perception on one hand
and action on the other.

The proposed approach involves a variety of artificial neural network
modules for learning higher order structures, including action-based patterns
associated with visual inputs. These networks learn correlations of lower
order features, which are extracted from the observed scenes or data over
suitable time intervals. Recurrent networks, trained by temporal
backpropagation or real-time recurrent algorithms [4], [6], are able to
generate time-evolving sequences of decisions, in one dimensional or two
dimensional (image) form, at their outputs. This makes them suitable for
correlating action-based data, such as eye-movement patterns, with the visual
scenes during training, and then generating and using corresponding eye-
movement patterns during testing, based on the actual observed scenes and
the correlations extracted during training.

Other structures that can be used for the same purpose include networks
trained by Hebbian rule with decay, or by reinforcement learning rules where
appropriate values are attached to the inputs. Mean firing rate neurons may
be considered in this framework, as well as spiking neurons [13] and
hardware implementations [14] both for non-temporal and temporal neurons.
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The above-mentioned networks will generally constitute modules of higher
order architectures that select and combine the responses of the different
modules, generating the required semantics. Hierarchical neural network
architectures, including pyramidal schemes and constructive algorithms [12],
which have shown capable of efficiently implementing higher order networks
for invariant image recognition [10], [11], can be considered as a means for
designing efficient implementations of this scheme.

Section 2 presents the proposed implementation scheme for capturing and
using 'action'-based perceptual information in neural networks classifiers.
Section 3 presents an experimental study illustrating the capabilities of the
proposed algorithm, while results and suggestions for further research are
given in the conclusions of the paper.

2. EFFECTIVE IMAGE RECOGNITION BY ACTION-BASED
NEURAL NETWORKS

An environment of capturing and processing of images has been created,
where a camera records images of the face reactions of one or more
individuals that are observing and trying to recognize visual representations
of objects or scenes. For purposes of simplicity, the visual representations to
be recognized are stored in a computer system and the observer views them
through a projection mechanism attached to the computer system which
provides the magnification that is necessary for capturing local eye
movements.

A subsystem has been created for processing the captured images of the
observer's reactions. The main goal of this subsystem is the extraction of
features, particularly, related to eye-movements during the perception
procedure. These features are in the form of motion vectors computed from
consecutive image frames. To compute such features, various preprocessing
tasks are being performed, including image segmentation using
morphological operators and transformation of resolution of the recorded
images in order to reduce the volume of the information that is used next for
recognition purposes [7].

A crucial aspect in the above frame-extraction procedure is the generation of
2-D image representations, of low dimensionality, of both visual input
images and associated frames of the eye-movements obtained through a
frame or video grabber. Multiresolution analysis is a technique that can
efficiently reduce the size of these representations [15], by including as much
as possible from the original image content in the approximate
representations [8] even in the presence of additional noise [9].
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Following the above, visual inputs are recorded together with the associated
observer's eye movements over a short time period in which human
perception is assumed to occur, and are subsequently processed to extract a
sequence of 2-D motion vectors corresponding to eye movements. These
images, together with the original images or scenes constitute the input to the
neural network that will attempt to correlate them for more effective
recognition purposes.

In this paper we propose to use recurrent neural networks as a means for
handling the extracted information. At each instant the network receives at its
input two images, i.e., the image to be recognized and a frame of the
action/perception motion vector sequence. During the training phase, the
network sets the structure and the weights of its connections in such a way so
as to recognize the displayed object, while at the same time it learns to create
and use, for this purpose, the sequence of the observer's eye-movements that
have been extracted during the previous stage.

After training, and during the application phase, the network receives at its
input the image or images to be recognized and starting fiom an initial
motion vector image creates, based on the already acquired knowledge, the
sequence of eye movement representations, which it also uses for recognition
of the presented image or scenes.

The ability of recurrent networks to generate meaningful action/perception
sequences, which when correlated with the original visual input, give the
networks the possibility to converge to the desired stable states, is the crucial
aspect examined in this paper.

The training of recurrent neural networks is a quite complex procedure. We
have been using a variety of learning algorithms for this purpose, such as a
temporal extension of backpropagation algorithm with or without adaptive
delays [4], [6], as well as real time supervised learning algorithms [5]. These
algorithms can be applied to networks with feedback and hidden neurons that
have the capability of following dynamically evolving systems.

3. EXPERIMENTAL STUDY

The experiment that has been used to test the performance of the proposed
approach was the T/C recognition problem, including deformed and
corrupted by noise versions of the two letters. Characteristic cases that have
been used are shown in Figures 1 and 2. These binary images consist of
256x256 pixels. Corruption by noise at 40%, for example, level is equivalent
to erroneously changing 40 per cent of the image pixel values from 1 to 0 or
0 to 1. We set up the experiment described in the previous section and
captured the corresponding eye movements of various subjects observing the
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(a) (b)
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Figure 1: (a) letter C corrupted by 40% noise
(b) letter T corrupted by 40% noise
(c) letter C corrupted by 45% noise
(d) deformed letter T
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(a) (b)

Figure 2: (a) deformed letter C
(b) letter T corrupted by 45% noise

above letter representations. Figure 3 shows four characteristics scenes
extracted from the sequence of the subject observing letter C corrupted by
45% noise that was shown in Figure 1. Figure 4 shows the corresponding
sequence for deformed letter T shown in Figure 1. Using the above four
frames of each image sequence we computed the center of gravity of the iris
and then extracted the corresponding motion vectors between consecutive
frames of each sequence. Table 1 shows the coordinates of the motion
vectors for each case that was examined.

C40 C45% Cdef. T400o T45% Tdef.
fl. 1-2 8,1 11,2 6,1 -14,0 -17,0 -23,3
fr. 2-3 2,6 2,5 2,7 5,2 5,0 10,1
fr. 3-4 -8,1 -11,0 -7,0 1,6 0,7 -2,7

Table I

Next we examined the ability of recurrent neural networks to perform the
following tasks:
1. Using the letter representations as input images and each motion vector,

represented as a 5x9 template of zeros and ones neuron states, as the
system output the network learns to create (in the learning phase) and
predicts (in the test phase) each motion vector from the temporally
preceding one.
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(a)

(b)

(d)

Figure 3: 'C' observing eye movement
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(a)

V"

(b)

(c)

(d)

Figure 4: 'T' observing eye movements
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2. Using the actual or predicted motion vectors and the letter representations
at their inputs to classify correctly the latter ones.

Outputs

Processing layer of

hidden and output
neurons

Feedforward and

feedback connections

Concatenated
v(n) x,(") input - output

z Z_ layer
Inputs

Figure 5: Architectural graph of a real-time recurrent network

We found most appropriate for this purpose the real time recurrent network
shown in Figure 5 [6]. We performed three experiments with training and test
letter representations (corresponding samples are the ones in Figures 1 and
2), Applying this procedure to motion vectors between frames 1-2, 2-3 and 3-
4, we defined the network architectures, comprised of about 20 units in the
hidden layer, which were adequate for predicting the motion vector sequence
(task 1). We then used a feedforward multilayer network consisting of about
60 hidden units to make the final classification task , using the derived
motion vector sequence. The results which we obtained in this experiment
were very good, since almost all examined representations were correctly
classified. For comparison purposes we applied a non-action-based,
conventional similar backpropagation network for the same classification
task. The network performance was very good in training, but rather poor in
test operation. The letters shown in Figure 2 are one of the examples which
the latter network failed to classify correctly, in contrast to the proposed one.

4. CONCLUSIONS

Neural network architectures have been used in this paper as a means to
improve recognition of images corrupted by noise or deformed, based on
motion vectors estimated from eye movements of subjects observing the
scenes. Initial results were very encouraging. However, further work is
needed to extend them to more complex real life scenes.
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ABSTRACT

In this paper, we present a new dynamical system called the "feature-locked
loop". The inputs to this feedback neural network are a set of feature vec-
tors and a one-parameter function that characterizes the data. We show that
the feature-locked loop is locally stable for one example of the characteristic
function and determines the value of its unknown parameter. We apply this
property of the feature-locked loop to the problem of sorting textures by their
similarity. One known method for image sorting by similarity is to determine
the Euclidean distance between the input feature vector and that of each tex-
ture in the database and then sort the resulting distances in the ascending
order. While this procedure produces a set of similar images, it is prone to in-
troduce outliers into this set. What this technique lacks is the measure of how
similar the input image is to the reported set of images as a whole. We use the
feature-locked loop and a priori information to quantify this degree of similar-
ity. The prior knowledge is encoded in the form of the one-parameter function
and a general assumption about the number of perceptual outliers in the re-
ported set. The unknown parameter, computed by the feature-locked loop, is
then related to the entire set of image features produced by the retrieval.

1. INTRODUCTION

Over the last several years, researchers in the image processing and the
pattern recognition communities have been showing an increasing amount of
interest in content-addressable image databases. Quantifying content, an in-
herently subjective entity, has the appeal of equipping large databases with
efficient user-friendly search engines [1]. While the problem of searching text
databases is well-understood, it is much more difficult to come up with a uni-
versal definition of "grep" for information contained within still images and
video. Thus, making precise the notion of similarity is paramount in develop-
ing query-by-content algorithms.

Several models of similarity and the corresponding search approaches have
been proposed by Picard et al. [1], [2]. For instance, one model considers
two textures similar if the Euclidean distance between their representative
features is "small". Defining features is a crucial step. Picard and Kabir report

This research was sponsored by Hewlett-Packard Laboratories, Palo Alto,
California.
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that projections onto the principal components of the power spectrum make
up feature vectors suitable for characterizing the Brodatz texture album [3].
Picard and Minka recognize the difficulty of working with a single model for
similarity in natural scenes and develop a method for choosing the appropriate
criteria from the "society of models" [2].

As part of a typical interaction with an image database the user chooses an
icon and the system comes up with a sorted set of similar images, depending
on the similarity measure. As noted above, there has been considerable effort
in finding the right models for the given types of images (faces, textures, etc.)
so that the perceptual similarities are reflected in the model representations.
However, the issue of cross-validating the outcome of a search in the absolute
sense has not been addressed. In other words, suppose that the query returns
a sorted set of images that are the closest to the input image, according to
some model. It is still unclear whether or not the closest of the set is close
enough, or whether or not the output set as a whole is sufficiently close to the
input.

The main contribution of this paper is the introduction of the feature-
locked loop, a new iterative non-linear feedback neural network, and the
demonstration of how its collective properties can be used to cross-validate
the similarity of the ensemble of images to the input image. In other words,
the algorithm provides the measure of closeness of the input image to the
entire retrieved set of images in some absolute (e.g., perceptual) sense. This
eliminates one drawback of the method of finding the Euclidean distance be-
tween the input feature vector and those of each member of the retrieved set
and then using a threshold as the acceptance/rejection criterion, namely treat-
ing the output images individually and not as a set, which may produce in
misleading results. For intance, if the query operation results in a large dis-
parity in the Euclidean distance between feature vectors, then those that are
accepted as "close" may be perceptually dissimilar to either one another, or
the input texture, or both. The classification aspect of the feature-locked loop
helps alleviate this difficulty. In addition, since this is a relaxation technique,
it can provide a running evaluation of the image database retrieval process.

The rest of this document is organized as follows. Section 2 develops the
feature-locked loop and analyzes some of its properties. Section 3 applies the
feature-locked loop to the problem of quantifying the output of a content-based
query. Section 4 summarizes the report.

2. FEATURE-LOCKED LOOP

Suppose that a model for image representation is given and consider N
data points in that model's space, each represented by a normalized feature
vector, Vi, i = 1, . . . N. Likewise, the input texture is characterized by the
normalized feature vector W7. Thus we have the set of the following normalized

feature vectors: WV, 1, 172 ... '. Vv. Assume that the likelihood of each feature
vector is determined by a PMF p(ff) of a discrete vector-valued random variable
y, which takes on the values V1, V, ... , VN. In other words, fi, i = 1,..., N
are all the possible realizations of g. We are interested in the PMF p(Z), where

i is the new discrete vector-valued random variable, whose realizations, Xýi,

include the presence of the feature vector for the input image, 1WV: )Xi, i =

0, . . . , N, where 4 0 = W7V, Xi = ]i, i = 1,...,N.
The loop operates by multiplying Xj for each model, i, by a quantity

0 < ri < 1, then sumnming all the Xiru contributions, and feeding the result
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back. As an example, we will later consider the form of ri(.) that depends on
the distance between )X and the quantity, b, which is fed back [4].

2.1. LOOP ANALYSIS

We now analyze local stability properties and study the equilibrium state.
Let p(Y) be defined as follows:

Pr(W)p(4'--), -- I +Pr(W)' =0, (1)

i- --r =(WY) i =1...,N, (2)
1+ Pr(W)

where the event W stands for • = 17V. Clearly, we have that ZN 0 A(i -

.V) = 1.
The second equation confirms that since the input tV is constantly injected

into the loop, its contribution is always the same. For example, if Pr(W) = 1,
then the input image is weighed as much as the sum of the rest of the models'
contributions.

From the description above, the operation of the loop is expressed as fol-
lows:

Pr(W) N (g)
E(Z) = 1r1 +Pr(W) + 1+ Pr(W) (3)

2.2. DYNAMICS VIA EXAMPLE

Recall that the features, _l,, are normalized and, as an illustration, consider
the following example, whose architecture is depicted in Figure 8):

f= ,) = Aexp{-IIYf - _i12}, (4)
N

-p(O= f) = 1; (5)

Pr(W) = 1, (6)

and An is some parameter of p(f). Then:

E(Y) =v +) P( c) (7)2
= G) (+fAZ exp{jIvj.,i7l1121) (8)(12)1

We see that here ri = Aexp{-II , - ý112}. Now g 7. As we iterate the
loop with the iteration index n, we obtain:

=n )(W + AN lf exp{I-II1.9i g~ 11I2)} (9)

Note that the dependence of the normalization factor, A, on the iteration
index, n, signifies that p(Y) is re-normalized on every iteration.
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2.2.1. LOCAL STABILITY

Assume that (9) has a fixed point. In other words:

- V+ Aiep 1Z(10)

is assumed to have a real solution. In order for this fixed point, b, to be
stable, the linearized version of the map must be stable as well [5]. Taking the

derivative with respect to b of the right hand side gives:

N N

ZAiT (ui -- ) exp{- I1 - b.,V _ =g2 A)ýiTZ exp{I - g1121 (11)
i=1 i=l

N N

- E Abý'Xe exp{Iexp{-I[X - bj.,, (12)
i=1 i=I

where in the last line, we made use of the fact that '1ZTx i = 11y, 1.
The necessary (but not sufficient) condition for the convergence of (9) is

its local stability, which requires (11) to be less than one in magnitude for any

fixed point b. In other words:

-1 < 1 - ZN AVTXi exp{-I19i - E1121 < 1, (13)

0 < E 1�E Ab T X, exp{-1 1 )• - gII2} < 2. (14)

Substituting (10) into (14) gives:

N

E Ab7 1 'Xiexp{-lI2• - ý112) (15)

i=1

= (1) A (VT +S AX exp{-ljX, -y'i2}) 11exp{-11 Jg,-blI21

N N

(1) AX, exp{-IIi _ gII2}E AyTexR{_1[jK12} +
3=1

N

A(21 ) I AwTgI Xp{AX, ep{- b -1}" (16)
i=1

We now examine the two terms in (16). For the first term, we recall the
triangle inequality and obtain:

N

IIE(:{)II = jjj 2)I, exp=-jIX 1 _. [12 l1 (17)

i=1

N N: JjAgi exp{-II1 , - 112}II = A119i 11 exp{-_11g, Q I2} (18)

N
= -- Aexp{llX-119 E12}11 = 1. (19)
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For the second term, we use (5) and the fact that 112412 = 1 and I1IW1
2 = 1,

which assures that:

N N

11> AWVTXS exp{-1I-X. - b112}11j E• AVWT XI exp{-II-Z _ E112i (20)
3=1 i=1

N

_< I-Aexp{-l 1 -, _ 1. (21)
i=1

Therefore, we have:
N

AKTI z ~~exp{-11 Y E11i2iii • + L)=1 (22)
t=1

Hence, (14) is satisfied and the system is stable. It is interesting to note that
the system converged to a steady state in all computer simulations.

2.2.2. INTERPRETATION

The loop equations indicate that it computes the expectation of the feature
vector, which describes an ensemble of points in the model space, including
that corresponding to the input image. Moreover, in the case of convergence,
this expectation becomes the value of the unknown parameter vector. Thus,
the equilibrium value of the parameter vector is consistent with the require-
ments of a valid PMF.

It is important to indicate that the computed value of the feature vector
77 = ni can have the meaning of the mean of the Gaussian-like PMF, (4), if the

sample size is large enough. In such cases, 6 is not "robust" against outliers.
The task of remedying this shortcoming is a part of an on-going effort. The
goal is to realistically estimate the amount of outliers in retrieved image sets
for the particular class of the input image:

3. CROSS-VALIDATING SIMILARITY

The previous section establishes that the steady state of the feature-locked
loop is a value (in the feature space) that describes an entire set of model
images, subject to an external input. In this section, we use this property
in order to attribute a confidence parameter to the result of querying a large
image database. The iterative nature of the system allows it to serve as a real-
time co-processor, dynamically evaluating the performance of the database.

3.1. PROGRAMMING THE LOOP

The feature-locked loop takes the following four inputs:

"* The feature vector describing the input image. Here, we will demon-
strate usage with the input image shown in Figure 1.

"* Feature vectors for the set of images produced by the query operation.
For example, the sixteen images in Figure 9.

"* The weight of the input image, relative to the set of images resulting
from the query operation. This parameter reflects the prior knowledge
about the average number of perceptual outliers produced by the query
operation.
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e The PMF describing the prior knowledge about the points in the model
space. In this study we use (4).

Upon convergence, the loop computes the expected value of the feature vector,
which describes all the images in the similar set as well as the driving input. In
addition, the loop yields (or "learns") the values of the PMF for each image in
the set. These "firing" weights determine the amount each feature contributes
to the value of the ensemble feature vector.

3.2. EXPERIMENTS

We use the Brodatz texture album [31 in our computer simulations. Eigen-
vectors of the covariance matrix of the power spectrum have been computed

for the Brodatz
database [1]. Then feature vectors have been produced by retaining the highest
100 projections of the power spectrum of tile given image onto these eigenvec-
tors.

Using these feature vectors, we conduct three computer experiments in-
volving the images in Figure 1 and Figure 9. Tile experiments differ by how
touch is known about perceptual outliers. In the first run, we assume that the
retrieval step produces no outliers and thus set Pr(IV) = 1 (as in the example
of Sectioet 2. In the second run, we assume that outliers are frequent and set
Pr(W) = 0. In the third run, we assume an intermediate chance of outliers
and set Pr(W) = ' The motivation for assigning Pr(W) in this fashion is that
a high weight on the input lowers the relative contributions of the images in
the set. including those of the outliers. In contrast, a low weight on tile input
invites all images in the set to contribute to the value of the characteristic
parameter, E(") = in For each experiment, we give two graphs:

f the feature vectors for the input image and E(£), plotted on the same
axes; and

c the relative contributions of all the textures, or 1(Y).

Tile plots show that when the input weighting is high, toe equilibrium
feature vector is very close to the original. The contributions from tile out-
liers are sn'apl In fact, only th "briclck" texture from the set contributes
sugn'fcaotby, reflecting a high intolerance to deviations from tile inpm t tex:-
tore.. Hov,,c-'7cr, when the inmu: is weighted the same as all the members of the
set, the ioop locks on to a collectively-determnined equilibrium feature vector.
In_ this particular case, the biggest contributions came from the high-frequency
g-ass textures, and not from the textures that more resemble the input image.
We o-userve that the difference between the input and the equilibrium feature
vectors is large, meaning that the absolute degree of similarity is small. F'-

nasll-, wlier tile input weighting reIVects a non-zero bias, a fey: outlier textures
"fire" nor-zero contribution~s, and the degree of similarity is intermediate.

During tie normal operation of tile loop, the inrout weight is held constant•i

If [Ii W-bli is sriall for the given input and the retrieved set, then the perceptual

eatchl is good'. Convers.-y, if 1,I1" - t1, is large, then the choice of features for
th1e d(aBtebase migLtt need to be rcviseu.

4. SUMMARY7

We have presented the fcature-locked 1oop, a novel non-linear dynamical
system. The loop computes the expected value of a vector-valued random vari-

able and thereby determines the underlying probability mass function with an
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Figure 1: Input image.

unknown parameter, and that parameter itself upon reaching the equilibrium.
This property is explored in quantifying the perceptual similarity between an
input texture and the set of textures obtained by querying an image database.
We show that given information about average performance of the query al-
gorithm and knowledge about the distribution of the feature vectors in the
database, the feature-locked loop provides a confidence measure for the re-
sult. Hence, the feature-locked loop can be employed in the design of built-in
self-test mechanisms that flag inconsistencies in the retrieval algorithm.
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FEATURE-LOCKED LOOP
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FEATURES FEATURES * FEATURES
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-~ : FEATURES
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Figure 8: Feature-locked loop diagram for the example of Section 2. Here, the
model features are the elements of V~i i = I_,..., N; the input features are the
elements of VV; the computed ensemble features are the elements of E(F) = b;

the input weighting is Pr(W) = 1; the distance metric is d fef[i,--rll; and
the "Gaussian switch" is oc exp{-d2}.
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Abstract

A novel technique for digital image halftoning is proposed
based on a symmetric error diffusion algorithm and a new form
of artificial neural network. Using an error diffusion neural nei-
work, all pixel quantization decisions are computed in parallel and
therefore visual artifacts resulting from the causality of the diffu-
sion filter in classical error diffusion techniques are reduced and
the resulting halftoned image quality is improved.

I. Introduction

Error diffusion is a common method of quantization in which an error asso-
ciated with a particular point process is diffused within a local region and
subsequent filtering methods employed in an effort to improve some perfor-
mance metric such as the signal-to-noise ratio. In most applications to date,
the error is the result of a nonlinear quantization process. In oversampled
analog-to-digital (A/D) conversion, temporal error diffusion and oversam-
pling techniques in conjunction with digital low pass filtering are used to
achieve resolution in the range of 16- to 20-bits. In digital image halftoning,
where a gray scale image is displayed or printed using only binary pixel val-
ues, the error is diffused in two spatial dimensions with the low pass filtering
operation being performed by the human visual system.

The digital halftoning problem may be formally described as follows:
given a continuous tone input image with intensity values in the interval
Xrn,n E [0, 1], find a bilevel output image constrained to ym,,n E {0, 1} such

0-7803-2739-X/95 $4.00 © 1995 IEEE
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that some predefined distortion measure d,,y is minimized. Although the er-
ror diffusion technique can be shown to provide an optimum solution to this
problem subject to a fidelity criterion, classical approaches suffer from im-
plementation constraints. In conventional unidirectional error diffusion, the
algorithm raster scans the image, and for each pixel, a binary quantization de-
cision is made based on the intensity of the individual pixel and the weighted
error from pixels within a diffusion region of previously processed pixels. As a
result of this unidirectional processing, the diffusion filter is necessarily causal
resulting in undesirable visual artifacts. In an effort to improve halftone im-
age quality, Anastassiou [1] proposed the use of a frequency weighted mean
square error distortion measure based on the frequency response of the human
visual system. He showed that minimizing this metric was analogous to min-
imizing the energy function in a classical Hopfield-type neural network. This
neural network approach provided a mechanism for symmetric error diffusion
which resulted in improved halftone image quality.

In this paper, we begin by describing the theoretical foundations of er-
ror diffusion coding as applied to the digital halftoning problem. Next, we
describe the problems associated with conventional unidirectional error dif-
fusion in terms of visual artifacts in the image, memory requirements, and
total convergence time of the halftoning process. We then introduce the con-
cept of bidirectional or symmetric error diffusion as an optimum solution to
the digital halftoning problem and describe the advantages associated with
this approach. A neural network formalism of the halftoning problem is then
presented based on a Hopfield-type neural network and a frequency-weighted
mean square error distortion measure. We then introduce the fully-symmetric
error diffusion neural network which directly implements the bidirectional er-
ror diffusion algorithm. Advantages, convergence and stability criteria, im-
plementation issues, and performance metrics are then discussed. Halftoned
images are presented throughout to describe the problems associated with
conventional halftoning and the improvement achievable with this new neu-
ral network approach.

II. Error Diffusion

Figure 1 shows a block diagram of the error diffusion architecture. Here,
H(zx, z2 ) represents the two-dimensional z-transform of a causal, unity dc
gain filter and q[Um,,] E {0, 1}. The unity gain criterion ensures that no am-
plification or attenuation of the error signal Em,n occurs during the diffusion
process. In this architecture, the error associated with the quantizer decision
at location (i, n) is diffused within a local region P•,,i to influence adjacent
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Quantizer
Xm,n +U mn q[. .] qm~n,,

£m,n
H(z,,z2 )

Figure 1: Block diagram of recursive error diffusion modulator.

quantization decisions. In the general case where H(zl,z 2 ) is assumed to be a

finite impulse response (FIR) filter with coefficients wij, the quantizer input

state um,n can be written as

Um,n - Xm,n - E Wi,jEmr-i,n-j. (1)
i,jERm,n

Here wij = 0, for all i j since we are not considering temporal error

diffusion in this application.

To mathematically quantify the effect of error diffusion, consider the re-

lationship between the quantizer error Cm,n -= q[um•n] - Um,n and the overall

quantization error E,, = q[um,n] - Xmn in the frequency domain. Assuming

that the error is uncorrelated with the input and has statistical properties

consistent with a white process, we can use z-transform techniques to show

G~zi~z2 ) E(zmZ2) -1 H/Z) E(Zl Z2 ) =-- 1 H(z, z 2 ). (2)

Appropriate selection of H(zi, z2) can spectrally shape the quantizer noise
in such a way as to minimize the effect of the low-resolution quantization

process on the overall halftoning process.

In unidirectional error diffusion, the image is processed in a raster fashion,

proceeding from the upper left of the image to the lower right. As a result,

the diffusion kernel wij is necessarily non-symmetric. Figure 2 shows two

popular error diffusion kernels attributable to Floyd and Steinberg [2] and

Jarvis, et al. [3]. The normalization factors ensure that the filter coefficients

sum to one and therefore meet the unity gain criterion.

Figure 3 shows a 348 x 348 image of the Cadet Chapel at West Point which

was halftoned using the filter coefficients shown in Figure 2(a). The original

image was scanned at 150 dpi and then the halftoned image was printed using

a 300 dpi laser printer. The unidirectionality of both the processing and the
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Figure 2: Error diffusion kernels for (a) Floyd and Steinberg and (b) Jarvis, et al.
filters. The "*" represents the origin.

diffusion kernel result in undesirable visual artifacts in the halftoned image.

These include directional hysteresis, which is manifested as "snakes" running

from northwest-to-southeast, and transient behavior near boundaries, which

appears as "shadows" below and to the right of sharp intensity changes. A

logical conclusion to draw from this analysis is that if we could symmetrically

diffuse the error and simultaneously process the entire image we could reduce

some of these visual artifacts and therefore improve the overall halftoned

image quality.

Figure 3: Halftoned image of the Cadet Chapel using Floyd-Steinberg weights.
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III. Neural Network Formalism

Artificial neural networks and their application to image halftoning have re-
ceived considerable attention lately [4][5]. This popularity lies in their ability
to minimize a particular metric associated with a highly nonlinear system of
equations. In the ideal case, a single neuron in the network is interconnected
to every other neuron in the network with a weighting determined apriori.
The output of each neuron is then a nonlinear transformation of the weighted
sum of all of the inputs where the nonlinearity usually takes the form of
a monotonic sigmoid function. The dynamic behavior of the network then
causes the system to stabilize to one of the minima of a well-defined energy
function.

A. The Hopfield-Type Neural Network

The dynamic behavior of an N-neuron Hopfield-type neural network can be
described by the following system of N nonlinear differential equations:

cdui(t) = (t) + wj'[uj(t)] + Xi, (3)
dt

where i = 1,2, ...N, Y[.] is a monotonically increasing sigmoid function, xi
is an input N-vector, and c is a scaling factor. In equilibrium, Equation (3)
implies

u, = xi + Zwi,ij[uj]. (4)

Hopfield showed that when the matrix of interconnection weights W is sym-
metric with zero diagonal elements and the high-gain limit of the sigmoid
.T[.] is used, the stable states of the N functions yi(t) = F[uj] are the local
minima of the energy function [6]

E I -yTWy - XTY (5)
2

where y C {0, 1} is an N-vector of quantized states. Here W is an N x N cir-
culant matrix derived from the original error diffusion weights wij. Figure 4
shows an electronic implementation of a four-neuron Hopfield-type neural
network. Here the individual neurons are represented as amplifiers (standard
and inverting) and the synapses by the physical connections between the in-
put and output of the amplifiers. Resistors are typically used to make these
connections.

Anastassiou [1] argued that Equation (1) corresponded to a unidirectional
feedforward neural network if the nonlinearity .F[uj] is replaced with the non-
monotonic quantizer error e,(u,). He showed that a frequency weighted dis-
tortion measure could equivalently be expressed as the energy function of a
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Figure 4: Electronic realization of a four-element Hopfield-type network.
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Figure 5: Symmetric error diffusion kernel wij based on the Jarvis, et al. filter.

The "e" represents the origin.

symmetric Hopfield-type neural network where the frequency weighting came

from the response of the human visual system. By selecting an appropriate

symmetric diffusion kernel and using the coefficients as the interconnection

strengths for the neural network, a fast massively parallel analog implemen-

tation of the error diffusion algorithm could be realized which minimized the

frequency weighted mean squared error. One method of generating a sym-

metric diffusion kernel is to include the coefficients of a causal kernel in the

anticausal portion of the matrix. This is shown in Figure 5 for a 24-neighbor

symmetric version of the filter shown in Figure 2(b). The corresponding

halftoned image is shown in Figure 6. Comparison of Figure 6 and Figure 3

shows that the directional artifacts which are characteristic of unidirectional

error diffusion are significantly reduced. Also, symmetric error diffusion pro-

vides increased detail in the halftoned image. This can be seen in the fine

detail in the leaves and the edges of the chapel structure.

B. The Error Diffusion Neural Network

The results of the previous section coupled with the architecture of Figure 1

and the spectral noise shaping described by Equation (2) can be formulated
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Figure 6: Halftoned image using symmetric Jarvis weights.

in the context of a symmetric error diffusion neural network. Here, H(zi, z2 )

is designed to spectrally shape the quantization noise spectrum according to
some predefined criteria.

In equilibrium the error diffusion neural network satisfies

u = W(y- u) + x, (6)

which results in an equivalence to the Hopfield network which can be described

by

u = (Ax) + (-AWy), (7)

where A = (I -W)- 1 . Effectively, the error diffusion network includes a

pre-filtering of the input image x by the matrix A while still filtering the
output y by a new matrix W' = -AW. The energy function of the error

diffusion neural network can be written as

E= lyTWy - xTy (8)

where y E {0, 1} is again an N-vector of quantized states. Convergence of
the error diffusion network is guaranteed if

V k: [-(I--W)-'W]kk > 0, (9)

433



x, x2 x3 xý
W_ 2.1

1.3 23 _

Y, Y2  Y3 Y4

Figure 7: Electronic realization of a four-element error diffusion network.

or equivalently

(I-W) < 1. (10)

Figure 7 shows an electronic implementation of a four-neuron error diffusion-

type neural network using similar hardware as in Figure 4. Figure 8 shows the
same 348 x 348 image of the Cadet Chapel halftoned using our new artificial

neural network. There is clear improvement in the halftoned image quality

over the images shown in Figures 3 and 6. Notice particularly the uniform

distribution of pixels in the cloud formation in the upper left of Figure 8

compared to Figure 6. Also noteworthy is the improvement around the fine

detail portions of the tree branches and next to the vertical edges of the

chapel.

One of the advantages of the error diffusion neural network over the

Hopfield-type network for digital halftoning is full connectivity. The matrix

W used by Anastassiou is a sparse circulant matrix and as a result, complete

diffusion of the error across the entire image is not achieved. The matrix AW

in the error diffusion network, however, is a full-rank matrix and therefore

complete diffusion of the error is achieved. Another advantage of the error

diffusion architecture is that it provides a more direct method of calculating

the coefficients of the diffusion kernel based on linear filtering and spectral

noise shaping techniques.

In this application, the feedback filter for the error diffusion neural network

was designed using conventional two-dimensional filter design techniques. Cir-

cular symmetry of the frequency response of this filter is critical because of
the sensitivity of the human visual system to directional artifacts like those

present in Figure 3. A two-dimensional FIR low pass filter with a kernel size

of 11 x 11 was designed using windowing techniques. The impulse response
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Figure 8: Halftoned image using the error diffusion neural network.

of the ideal low pass circularly symmetric filter is

h(nj, n 2 ) = 2 I + 2 (11)

where 0 < R = 0.437r < 7r is the cutoff frequency, Jl() is a bessel function
of the first-kind, and nj and n2 are the two spatial dimensions. The window
used was a Kaiser window with parameter a

I ,o [a 1 -((n +2)/25)]
wk(nl,n2) = I- ] o +1 2n < 25 (12)

0 ; otherwise

where I0 is a modified bessel function Io = Jo[ja]. This approach to the error
diffusion filter design was motivated by the spectral analysis of the halftoned
image analysis in [7].

IV. Summary and Observations

In this paper, we have presented a novel method for digital image halftoning
based on a symmetric version of the error diffusion algorithm and an error
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diffusion neural network. This symmetric error diffusion approach provides
a means of improving halftoned image quality while reducing computational
complexity and storage requirements. A significant advantage of this new
implementation is that arbitrary size and shape diffusion kernels can be im-
plemented thereby reducing the visual artifacts which have become charac-
teristic of halftoned images. This can be accomplished with no penalty in
terms of computation speed. The error diffusion neural network computes
the halftoned image asymptotically faster than a conventional Hopfield-type
neural network. The conventional network requires - O(N 2 B) time per iter-
ation to compute an image of N x N pixels with a diffusion support region
of B pixels. The error diffusion neural network implementation can perform
the same iteration in 0(1) time.
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Abstract - A method for fast pixel by pixel estimation of the Glu-
cose Metabolism in the brain using the tracer ['8 F]flourodeoxy-
glucose in dynamic PET-scan data is described. A neural network
is trained to estimate the glucose metabolism on data generated
by direct fitting of the rate constants in Sokoloff's model. The
generalization ability of the neural network is tested on data from
subjects not included in the training set. This method can be used
to estimate changes of the metabolism in different brain regions
for subjects with serious brain disorders. By using the neural es-
timation procedure the processing time for a brain scan volume is
reduced from 48 hours to 4 minutes!

INTRODUCTION

The Positron Emission Tomography (PET) technique is an important tool for
mapping the brain metabolism and functionality [3]. The primary aim of PET
is reconstruction of concentrations of certain radioactive tracers in the brain.
Useful tracers emit positrons that are locally annihilated to produce two 511
keV gamma rays propagating in opposite directions. The 3D distribution of
the tracer can be reconstructed from the geometric constraints of coincident
counts, using standard techniques (filtered backprojection). An important
class of tracers are chemically equivalent to substrates of the basic brain
metabolism. By reconstructing such tracer distributions important aspects
of brain metabolism have been revealed. Furthermore, by investigating the
transient response to a tracer injection, it is possible to identify fundamental
kinetic rate constants on a set of dynamic PET images. The estimation of

0-7803-2739-X/95 $4.00 © 1995 IEEE
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the glucose metabolism in the present study has been applied on the Sokoloff
model [6]. To gain maximal spatial resolution of the rate constant distribution
we will compute the estimate on a pixel by pixel basis as originally described
in the work of Kanno et al. [5].

We demonstrate the ability of a neural network to substitute for tedious
parameter fitting procedures. The neural network system is trained to pro-
duce a smooth map relating a given transient pixel activity to a key parameter
of metabolism, viz. the glucose utilization rate Rt. By identification of the in-
verse kinetics the estimate of the spatial distribution of R may be obtained
three orders of magnitiude faster than by direct fitting of the kinetic model.

The work described in this article is a continuation of our work presented
in the proceedings of NNSP'94 [1]. In particular we show that the neural
net scheme can generalizc, i.e., that the inverse kinetics map trained on data
from one set of subjects may be used for interpretation of data from other
test subjects.

SOKOLOEF's KINETIC MODEL

In the present work we are considering the kinetics of the compound [10F]flou-
rodeoxyglucose (FDG). The kinetics of this tracer are similar to glucose in
the initial phases of metabolism. It passes through the blood-brain barrier
(BBB), and is phosphorylized intracellularly in a process analogous to glu-
cose. The phosphorylized [t 5 F]flourodeoxyglucose compound does not enter
into the Krebs cycle of glucose metabolism therefore it is effectively trapped.
The kinetics can be modeled by a compartemental model involving one com-
partment representing the tracer density in the arterial blood outside the
BBB, C(f; one compartment representing the so-called precursor pool, C' ; and
finally a compartment representing the intracellular phosphorylized fraction
behind the BBB, Cý,,; see figure 1. In current experiments the arterial con-
centrations are measured continuously with the scans.

BBB

Blood plasma Brain tissue

Precursor pool Metabolic products
FDG •FDG FDG-6-PO,

C; C. C.

Figure 1: Sokoloff's three compartment model applied to phosphorylization of
['5 F]flourodeoxyglucose (FDG). The star on the concentrations signifies that we

consider tracer amounts and constants.
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Following the injection of the tracer, hence, the rise of the arterial blood
concentration Cp,, the flow through the BBB starts. The measured PET tracer
activity is the sum of the activities of the two compartments to the right of the
BBB in figure 1 and a certain fraction, V7, of the arterial blood concentration.
This can be calculated as

C7 = C± + +V C. (1)

The dynamics of the three compartment model is given by:

dC,' Wý WýI+ V Wý(2)
dt dt dt dt

with

d = - EC' (3)

and
dC = ký * - k5C- -kC. (4)
dt 1i 2

The reverse reaction rate constant k* corresponding to k5 is neglected; it
is not identifiable within the measurement time of the present experimental
setup.

These linear differential equations describing the response of the activity
of the arterial blood (Ck (t')) are straightforward to integrate yielding the
two time dependent concentrations,

CS (t) ke-(k+k3)t e(k2+k*)t'cý (t') di', (5)

and

Q, (t) = kIkf e-(ke;+kf)t' e(kQ*+k*)t"c; (w") dt" dt'. (6)

Following injection these solutions describe the transient activity in terms
of the measured Cp(t), the three rate constants (kt, k*, k*) and the plasma
volume fraction V;. Conversely, for a given transient Ci(t) and for given
measured sum of concentrations C@(t) we may fit the three rate constants
and the plasma volume fraction. We use a simple least squares cost function
for the fit, hence implicitly assuming Gaussian residuals. Optimization over
the four parameters (k7, k, k/ and Vp*) is carried out using a second order
Newton scheme1

From these parameters we compute the important glucose utilization pa-
rameter R

1 Based on the solution to the kinetic model it is straightforward to compute the second

order derivatives.
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fCgi k~k*R= c- -1 2 (7)

LC k; + k* 7

where cfl is the glucose concentration measured in the blood for each subject,
and LC the so-called lumped conslant for the model. We use the value (LC =
0.55) [4].

Two different approaches have been used when estimating the kinetic con-
stants. In [6, 3] it is assumed that the parameters are homogeneous in regions
and therefore can be fitted using the region averaged activity. Alternatively
the rate constants can be fitted at a pixel by pixel basis as proposed in [5].
However, this approach has not found widespread use since it is rather tedious
to fit the kinetic model in all pixels.

The database used for these experiments are PET data collected at the
PET center at Rigshospitalet, Copenhagen, and stems from 10 normal sub-
jects. Data are acquired on a GE4096 plus (General Electric Medical Sys-
tems), sampling 15 slices sinmltaneously. The dynamic scans after injection
of 200 MBq F-18 labeled FDG are performed over 60 minutes, providing 34
contiguous time frames of increasing duration in order to provide a reasonable
sampling of the C0 curve (10@6 sec; 3©20 sec; 8460 sec; 5@120 sec; 8@300
sec). Two examples of input blood curves are shown in figure 2.

The images were reconstructed in 128x128 matrices (2ram 2 pixels) by
standard Filtered backprojection (Ramp filter with Hann window). Correc-
tion for attenuation was based on a separate transmission scan with a rotating
Germanium pin source. For further introduction to PET scan techniques see
e.g., [3]

1ýo 1•o 1 0 5

Figure 2: Input hlood curve as a function of time for two different subjects. Note
the large variation in the shape (value and time for maximum) of the blood curves
for different subjects.

In figure 3 a fit of the three rate-constants and the calculated glucose
utilization R on a pixel by pixel basis in one slice is shown. We note that
these rate constant pictures are rather noisy, reflecting the noise level of the
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original pixel activity curves also shown in figure 4. To provide less noisy
data for the neural net training procedure we have averaged and subsampled
so that a "superpixel" in the new image is the average of 4 x 4 pixels of the
original image. Another reason for subsampling is that it takes approximately
48 hours (on HP9000/735 workstation) to fit the parameters in Sokoloff's
model on 1 slice, 128 x 128, image, using a Newton based method. A full
brain volume consist of 15 slices.
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of identifying the inverse model of the kinetics: we search for a map that
provides an estimate of the glucose utilization 1? in each pixel [1]. Our basic
vehicle will be a simple feed-forward network.

The input to the neural network is the measured activity of a given pixel.
Futhermore, we saw in figure 2, that the input blood curve (C@) varies con-
siderably between subjects due to variations in the way doses were injected
and a individual blood circulation. Hence, we need to provide this infor-
mation to the neural network model if we want it to be able to generalize
from one subject to another. C.f. (7) the total blood glucose concentration is
also provided as an input to the neural network. This concentration can be
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Figure 4: Result of simulating the Sokoloff model in two different pixels within the
brain. The measured activity data for a single pixel, shown by 'o's, is very noisy,
noise levels are highest for the first data points where the measuring time is only
5-10 seconds. The measured blood curve data is shown by '*'s. The dashed curve
shows the result of a simulation using the estimated model.

considered constant during a scan. This gives us a total of 69 inputs to the
neural network: 34 inputs describing the transient activity in the given pixel,
another 34 measurements of the activity in the blood (the blood curve), and
1 measurement of the glucose concentration in the blood.

The fact that we have subsampled the data for the training set does not
prevent us from using the network on the individual pixels in the test set.
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NETWORK DESIGN

The feed-forward neural network used comprises 6 hidden units using tanh
activation functions and a linear output unit. The network is trained using a
pseudo-Gauss Newton method (a diagonal approximation to the Hessian ma-

trix is used) as described in [7], and pruned using the Optimal Brain Damage
method described in [2] to minimize computation and to improve general-

ization. The "optimal" network architecture is chosen by using a validation

data set from a subject which has not been incorporated in the training or
the test sets.

4000 examples from 8 subjects (500 from each) are used for training the

neural network, and the generalization ability is then tested using 8000 ex-
amples from the same group of subjects (1000 from each). The examples
which go into the training and test set are chosen so the estimated glucose

utilization (R) is in the interval [1.0, 12.0]. Pixels with R-values outside this
interval were typically found outside the brain or were discarded as severe

noise outliers. Further, the generalization ability is tested on a data set con-
sisting of 1500 examples from a subject not included in the training set. The
"optimal" network is chosen using a validation data set consisting of 1500
examples from still another subject which has not been used for training or
testing.

From equation (7) it can be seen that when lb is calculated the ratecon-
stant factor is multiplied by a global factor c., for each subject: the glucose
concentration in the blood. To assist the training problem, the glucose uti-

lization l is divided by this global factor for each subject (it is difficult for
a feed-forward net to learn a multiplication). The neural network is then

trained to estimate Rl/cgj.
The data sets used for training and testing the neural network are nor-

malized to have unit variance. Further, intial experiments have shown that
it is very difficult to train the neural network to estimate the global mean

glucose utilization level. The problem is that only 8 different subject are
represented in the training set. The global mean factor for each subject is
therefore subtracted from the output of the network and the learning/test set
outputs. The normalized squared errors shown in the following figures are

calculated from the mean subtracted data.

In figure 5 the result of a pruning session of weights in the network is
shown. We see that the network easily generalizes to the (interpolation) test
data derived from the same 8 subjects that were used to collect the training
set. The minimum of the validation error is seen to be for a network with 278
weights. This network architecture also generalizes well to the independent
test set.

In figure 6 the left panel shows the direct estimate of the glucose utiliza-
tion for a subject from the training set (4 x 4 superpixels), while the right
panel shows the output from the trained neural network. The neural network
generalizes very well from the 500 examples taken from this subject to the

445



- Learn error

0.25 - Test error (same rubjeots)
Vajidation error (other subject)

Test error (other subject)

20.2-a,

o . I . '

7°0.00

00 450 400 350 300 250 200 150 100 50 0
Parameters in neural network

Figure 5: Normalized training and test errors (unit variance, mean subtracted for
each subject) during a pruning session of the neural network. The parameters are
pruned using the OBD method. For test data from the same subjects as used in the
training set the test error closely follows the training error curve. The validation
error is used for chosing "optimal" network architecture. It can be seen that this
network also generalizes well for the independent test set.

rest of the pixels in the image.

10 
22

Figure 6: Images showing the glucose utilization as determined by fitting the kinetic
model (subsampled 4 x 4 superpixels) using a second Newton scheme (left panel)
and as determined by the neural net operating as inverse model for the kinetics
(right panel). A total of 500 examples from the 15 slices for this subject is used as
a training set, together with 500 examples from each of 7 other subjects. The right
panel shows the result of evaluating the neural network on each pixel in the slice,
the network generalizes very well for this subject.

Figure 7 shows the estimate of the glucose utilization for a subject, which
was not used in the training set. Qualitatively the similarity is striking.
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However, it can be seen that there is a problem in estimating the global level.
Especially, the low level (the background) can be seen to have an offset.

77

6 2

Figure 7: Images showing the glucose utilization as determined by fitting the kinetic
model (pixel by pixel) using a second Newton scheme (left panel) and as determined
by the neural net operating as inverse model for the kinetics (right panel). This
subject has not been incorporated in the training set. A major part of the gener-
alization error is caused by a global offset; the origin of this offset it is not clear at
present.

It is important to note the difference in the computational burden of
the two methods. The execution time for the neural network is orders of
magnitude less than the time needed to fit the rate constants in Sokoloff's
model by the Newton method. Using the neural network it is possible to
estimate the glucose metabolism in 15 slices of 128 x 128 pixel images in less
that 4 minutes on the HP9000/735 workstation, compared to about 48 hours
required by the fitting procedure.

CONCLUSION

In this article it has been shown how a neural network can be trained to learn
the inverse model for the three compartment PET tracer kinetic model. The
neural network way of estimating the glucose utilization is significantly faster
than fitting the kinetic rate constants directly and the generalization ability
of the neural network solution seems very good even to subjects which have
not been incorporated in the training set. We are currently pursuing robust
estimation of the global mean glucose utilization, also we expect that the
neural network can be used to estimate the glucose utilization in pixels from
a subject with serious diseases, e.g. Alzheimers disease.
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Abstract: System identification of a nonlinear loudspeaker/microphone
acoustic system is necessary to achieve high acoustic echo cancellation in the
handsfree telephony environments where the loudspeaker often operates at
high volumes. In this paper, a partial adaptive process consisting of a small
order tapped delay line neural network (TDNN) followed by a delayed Nor-
malized Least Mean Squares (NLMS) adaptive filter is used to model a loud-
speaker/microphone acoustic system. The TDNN models the first part of the
acoustic impulse response (AIR) where most of the energy is contained and the
delayed NLMS filter models the remaining echo. Experimental measurements
confirm that a short length TDNN is capable of improved identification in an
undermodelled system and that by extending this to the partial adaptive
TDNN structure, the ERLE performance improves by 5.5 dB at high loud-
speaker volumes when compared to a NLMS structure.

INTRODUCTION

In this paper, a partial adaptive process consisting of a tapped delay line feedfor-
ward neural network (TDNN) and normalized least mean squares (NLMS) struc-
ture are employed in an attempt to model loudspeaker nonlinearities at high
volumes. The specific application here is improved steady state performance for
acoustic echo cancellers in the handsfree environment using conference type speak-
erphones. Most of these consumer products employ inexpensive audio components
which are susceptible to nonlinear distortion at low frequencies and high volumes.
In this paper, the identification of the nonlinear loudspeaker/microphone system is
considered. In a real environment however, the AEC structure must be capable of
identifying and tracking not only the reflected signals from the room, i.e. its acous-
tic impulse response (AIR), but also of modelling the plastic enclosure vibrations
and nonlinear loudspeaker response, as shown in Figure 1.

0-7803-2739-X/95 $4.00 © 1995 IEEE
449



Reference Signal r(n)

EchCanceller Direct Path s EnclosureStructure (A Ir)Rs Reflections/

AaVibrateons
Errort
Signal
e(n) " icrophon

+ Primary Signal p(.-) e

FIGURE 1. Acoustic Echo Canceller Structure. The AEC must identify not only the
AIR but nonlinear and vibration effects as well.

Conventional AECs utilize a linear adaptive transversal filter to model the AIR and
cancel the echo signal. At low volumes where nonlinearities are absent, this is a
classical system identification problem whereby the adaptive filter adjusts its coef-
ficients via the NLMS algorithm [4] to model the echo path, H(z) between the loud-
speaker and the microphone so the system output, e(n) is minimized. The NLMS
algorithm is the baseline by which performance of alternative models is measured
but it is incapable of reducing nonlinear distortion. A measure of the AEC perfor-
mance is the Echo Return Loss Enhancement (ERLE) which is defined as [5];

E [p2 (n)] 7 [(,21]ERLE(dB) = 1lm II0log ll101oa 2  (1)2(n) G 2j(1

where (52 and &2e refer to the variances of the primary and error signals respec-
tively and E is the statistical expectation operator.

Limitations of AEC Performance

1) TIP/TP Ratio: One of the limitations of AECs is undermodelling of the AIR. As
shown in [5] the achievable ERLE is determined in part by the degree of undermod-
elling of the unknown system. The results show that the achievable ERLE is deter-
mined by the Total Impulse Power to Tail Power (TIP/TP) ratio, defined as;

M-1

TIP _____

-f- lOlog (2)
TP M-i (2)

where h is an impulse of length M and N is the discrete point at which the "tail" is
considered to start. The TIP/TP ratio is invaluable for determining the optimum
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number of AEC filter taps to use given a certain loudspeaker, microphone and
enclosure. A TDNN can be used in place of a NLMS filter to identify a loudspeaker
[7] and to see the effect on the TIP/TP ratio when operating at high loudspeaker
volumes. The experimental results shown in Figure 6 indicate that the TDNN is
capable of achieving a higher ERLE than the NLMS when in an undermodelled
state, i.e. when the number of delays in the delay line is less than the AIR. This
improvement in performance can be used in the partial adaptive structure
(described below) to obtain improved performance at high volumes.

2) Nonlinear Distortion: The nonlinear parameters of a loudspeaker may be
described by the force deflection characteristics of the loudspeaker cone suspension
system and nonlinear flux density as described in references [1][2]and [3]. Suspen-
sion system nonlinearity manifests itself as soft clipping at the loudspeaker output
and results in odd-order harmonics under large signal conditions. The nonlinear dis-
tortion consists mainly of cubic terms and can easily be 5 to 10 percent of the total
output, especially when dealing with small loudspeakers that have low power rat-
ings. Simulations and experimental results indicate that neural network models can
identify this nonlinear distortion more effectively than linear adaptive structures.

3) Enclosure Vibration: Vibration is a serious problem that occurs under the same
conditions as nonlinear distortion, namely at low frequencies and high volumes. It
is important that this be addressed in a practice but is considered beyond the scope

of this paper and will not be discussed further.

Figure 2 shows the general ERLE performance in a typical echo environment [5].
In a simulated experiment, the ERLE will follow the TIP/TP ratio very closely,
however, in actual measurements, limitations such as room noise, vibration and
loudspeaker nonlinearities will limit the achievable ERLE as indicated.

TlPfrP Limit

S• Room Noise Limit

Nonlinearities Limit varies with

volume

Enclosure Vibration Limit

Varies with

Achievable ERLE

# of FIR taps

FIGURE 2. Achievable ERLE as a function of Physical Limitations. In the absenca
of vibration, nonlinear distortion and room noise, the achievable ERLE is
determined by the TIP/TP ratio.
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NEURAL NETWORK MODELS

Tapped Delay Line Neural Network

A tapped delay line neural network previously presented in [6] is shown below in
Figure 3. It can be used to perform a nonlinear system identification of the loud-
speaker/microphone system. It consists of a tapped delay line input layer, two hid-
den layers which have a piecewise linear/sigmoidal activation function and a linear
output node. The piecewise linear/sigmoidal activation function is linear below +1-
0.2 and then follows a squashed hyperbolic tangent sigmoid beyond this point such
that the output is squashed between +/- 1.0. As shown in [6], this improves system
identification at low volumes where the loudspeaker is essentially linear but also
allows for the soft clipping effect observed at higher loudspeaker volumes. It
should be noted that for activation levels less than the +/- 0.2 linear region, the gra-
dient calculations are trivial and the filter complexity approaches that of the NLMS
filter.

Z- - - - Nonlinear

Speaker

L Linear Node Microphone

+

FIGURE 3. Tapped Delay Line Neural Network Adaptive Echo Canceller Structure
(TDNN).

Partial Adaptive Model

The partial adaptive process utilizing a neural network preprocessor is shown in
Figure 4. It consists of a low order TDNN to model the large part of the AIR and a
NLMS filter to model the tail of the echo. A fixed delay line equivalent to the delay
line length of the TDNN is inserted before the NLMS filter. A similar algorithm
incorporating a multi-microphone linear NLMS structure is presented in [8]. In this
paper however, the structure has been modified to incorporate a neural network as a
nonlinear preprocessor.
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Referring to Figure 4, the output e 2(n) is given as;

e2 (n) = e, (n) -Y2 (n) = p (n) -y 1 (n) -Y2 (n) (3)

where p(n) is the microphone (primary) signal, yI(n) is the output of the TDNN and

Y2(n) is the output of the delayed NLMS filter. Expanding, we obtain;

N 2

e2 (n) = p (n)- y I(n) - I w (n) x(n -i (4)

i= N + I

where w(n) are the NLMS tap weights and x(n) is the information vector, N 1 is the
delay length of the TDNN section and N2 is the total impulse length.

In the proposed structures there is no feedback hence the backpropagation algo-
rithm [9] is employed to train the networks. A normalized step size [4] is employed
during the training and tracking phase for both the NLMS and neural network sec-
tions. The stepsizes !tNLMS and P-TDNN are individually calculated and updated
after each new sample is shifted into the tapped delay line.

The TDNN consists of 150 taps in the delay line, and 2 and 3 nodes respectively in
the 1st and 2nd hidden layers. The NLMS section has 450 taps such that the total
impulse response is 600 taps.

r(n)

150
taps TDNNar

NLMS tap S
A.F. tp

450

error tas error
signal - signal yj(1z)

y2n e1(n) pn

FIGURE 4. Partial adaptive structure utilizing a TDNN to cancel the first part of
the AIR and a NLMS to cancel the tail portion. Signal e2(n) is the residual signal
left after the echo has been cancelled.
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COMPUTER SIMULATIONS

Simulations were performed using a computer generated white noise source as the
reference signal, which was then filtered and convolved with an artificial room
impulse function. The reference and primary files were then applied to the corre-
sponding algorithms. For each run, the reference signal is distorted by adding both
quadratic and cubic distortion according to the following equation;

ax + bx 2 
+cx (5)

Y -lal + JbI+ cl(5

where a, b, and c refer to the amplitude of the linear, quadratic and cubic factors, x
is the input signal and y is the output signal level. The coefficients b and c were
increased such that the distortion level increases relative to the primary signal level.
The signal to distortion ratio is calculated by dividing the variance of the undis-
torted signal portion by the variance of the distorted signal portion. For each run,
the algorithm was allowed to converge for 80000 samples and then a mean con-
verged ERLE was obtained. The results shown below in Figure 5 indicate that the
partial adaptive network outperforms the NLMS in high distortion environments,
i.e. at low Primary/Distortion ratios.

Comparison of Steady State ERLE
35 -

30-

25

~20 -

15

10-

NLMS ]
Partial Adaptive TDNN

0 5 10 15 20 25 30 35
Primary to distortion ratio

FIGURE 5. Simulation results show that the partial adaptive TDNN outperforms
the NLMS in high distortion environments.

EXPERIMENTAL RESULTS

Experimental Setup

In order to remove the effects of vibration and room noise, the loudspeaker and
microphone from a commercially available speakerphone were removed and placed
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in a standard baffle inside an anechoic chamber. Filtered "reference" signals are
applied to the loudspeaker and the microphone picks up the reflected or "primary"
signal. Both the reference and primary data signals are recorded on a Digital Audio
Tape and later sampled at 16 kHz and stored to disk for off-line processing. The
loudspeaker volume is varied from levels of 75 dB Sound Pressure Level (SPL) to
100 dB SPL, measured at a distance of 0.5 meter. Both the partial adaptive TDNN
structure and the NLMS algorithm are applied to the measured data and a number
of ERLE curves are obtained for various SPL levels.The algorithm is allowed to
converge for 32000 samples and then the average ERLE is obtained from the last
8000 output values.

TIP/TP Performance for the TDNN

The recorded data was applied to the TDNN structure to determine the optimum
length for the TDNN section for the highest volume (100 dB SPL) case. The results
shown in Figure 6 illustrate that for a system with undermodelling of the impulse
length, the TDNN has improved ERLE performance compared to the stand alone
NLMS. The best performance comes at approximately 150 taps where the differ-
ence between the TDNN and NLMS ERLE value is approximately 5.5 dB.

ERLE using TDNN and NLMS for the Undormodelled Case
26

22

ITDNNI

0 100 200 300 400 500 600 700 800 900 1000
N umber of Taps in Delay Line

FIGURE 6. Experimental Results. A TDNN is capable of obtaining a better
ERLE in an undermodelled state as compared with the NLMS algorithm.
Results obtained at a high volume level of 100 dB SPL measured at a distance of
0.5 meter.
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Partial Adaptive Structure Performance with Increasing SPL

As shown in Figure 7, the converged ERLE for the partial adaptive structure
decreases from a high of 32dB at 80dB SPL to 18.5dB at 100 dB SPL when using
the NEMS algorithm. This agrees with results presented in [4] and [8] which show
that ERLE is low for low speaker volumes (where acoustic, thermal and DSP
related noise are significant) but increases as the reference signal increases, eventu-
ally reaching a plateau. Any increase in reference signal level to the loudspeaker
after this point results in a decrease in the ERLE due to nonlinear distortion. Also
shown for comparison is the partial adaptive TDNN algorithm which outperforms
the NLMS algorithm at high volume levels. The TDNN section consisted of 150
taps as determined from Figure 6.

Comnparison of Steady State ERLE

30-"-

22... . .

/- Patia! Adaptive TRNN

20 ..

75085 90 too10
Sound Pressare Level [dB]

FIGURE 7. Experimental Results. Converged ERLE performance of the partial
adaptive TDNN structure compared to the NLMS structure. A 5.5 dB improvement
in ERLE can be obtained at high volumes.

The length of the total impulse response is the same for both the partial adaptive
TDNN structure and the baseline NLMS structure and is truncated to 600 taps.
Note the improvement in ERLE over the NLMS case is significant in the high SPL
volume ranges and is greater than 5.5 dB at volume levels in the vicinity of 100 dB

SPL.

Convergence

Figure 8 illustrates the ERLE convergence of the partial adaptive TDNN structure
compared with the NLMS structure, obtained using data recorded at 100 dB SPL.
The convergence rate of the new structure is slightly worse than the NEMS and will
affect the tracking performance of the AEC. Methods to reduce this are currently
under investigation.
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ERLE Convergence
30

Iterations x 10

FIGURE 8. Experimental Results. ERLE convergence curves for the partial
adaptive TDNN structure and the stand alone NLMS AEC at the highest volume.

CONCLUDING REMARKS

A TDNN structure has been shown to improve the achievable ERLE of a loud-
speaker/microphone system at high volumes. This suggests the use of a partial
adaptive structure incorporating a short delay TDNN to replace a section of the
NLMS filter. The partial adaptive TDNN structure was found to improve the ERLE
performance over the NLMS baseline ABC by 5.5dB at high volumes where loud-
speaker nonlinearities limit the achievable ERLE. All measurements were per-
formed using real audio components. Although the new structure clearly offers
improvements at high volume (i.e. high distortion) levels, it does not quite match
the performance of the NLMS structure a low distortion levels. It also has a slightly
slower convergence rate, although acceleration techniques were not employed. This
is the subject of future research.
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I. ECG Beat Classification Problem

Computer-assisted monitoring and analysis of (surface) ECG signals has
received much attention in the past few decades [2, 3, 4, 5, 6, 8, 10, 11, 12, 16,
19]. Over years, the performance of computer based ECG monitoring has
gradually improved and been accepted in many hospitals and clinics. However,
certain performance obstacles remain to be solved. One major problem faced by
today's automatic ECG analysis machine is the wild variations of ECG wave form
morphologies of different patients and patient groups. An ECG beat classifier
which performs well for a given training database often fails the test when
presented with a different patient's ECG wave form. Such an inconsistency in
performance is a major hurdle preventing fully automated ECG processing systems
to be widely used clinically. A naive, yet impractical solution to this problem is to
customize the ECG processing algorithm to each individual patient manually. To
do this, physicians must laboriously edit the ECG record for each patient, and
engineers must program such changes into the ECG processing algorithm. The
cost involved in such a practice quickly defeats the original purpose of using
automated ECG machine - to save time and labor. Indeed, today's commercial
ECG monitoring machines are designed for the use by general patient populations,
and hence potentially suffer from this "patient adaptation" problem.

In this paper, we report an effort to develop a user-adaptation
(customization) algorithm which, with minimal human supervision, is capable of
adapting the performance of an ECG beat classification algorithm to the special
characteristics of individual patients. In our algorithm, we assume a black box
ECG beat classifier, and a small set of user-specific training data, edited by human
experts, are given. The objective is to devise a method to take advantage of the
small user-specific training data set to achieve high classification rate than using
the black box ECG beat classifier alone.

The black box ECG beat classifier model is used in our work to model the
commercial ECG processing machines whose internal processing algorithm and
training database are highly guarded company proprietary infonnation and can not
be made available to end users. Under the black box model, we are allowed to
observe the output of classification when presenting a feature vector to the ECG
beat classifier, but not to temper the internal ECG beat classification algorithms.
Moreover, we can not assume the availability of original training data which
helped producing the black-box ECG beat classifier. Instead, at our disposal is the
much smaller user-specific training data set.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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Proposed Approaches

This user adaptation problem bears certain resemblance to the incremental
learning problem in that new data is to be incorporated to improve existing
classifier's performance. However, the black box model of the existing classifier
prevents us to directly modify the classifier structure as incremental learning
algorithmns do. Instead, we propose two different methods to circumvent this
problem:

Mixture of Experts

The basic idea is to leave the existing black box classifier intact. Instead,
we use the given small, user-specific training data set to develop a "local expert"
classifier. Then we invoke a modified "mixture of experts" approach [18], [13],
[17], [7], [9] to combine these two classifiers, hoping to achieve better
performance. Briefly, let yl(x) and Y2(x) be the output of the two respective
classifiers, then the combined output (passing through a threshold unit) of that
class will be

y(x) = f[gl(x)yl(x) + g2(x)y2(x)] 1 _< c -< C (2)

where C is the number of classes, f is a threshold unit, gi(x)s ire scalar outputs
from a gatin,,4 nctwork, and are defined by [I]

2

gi(x) = exp(vjx)/l exp(vtx). (3)
j-1

One interesting question is whether the classification rate of y(x) can be made
higher than that of yI(x) or Y2(x) alone.

Theorem 1. Define R(yi(x)) = Ix1 x [ X, and yi(x) = z(x)[, i = 1,2 to be the sub-
region in the feature space where the classifier yi(x) makes correct classification of
x and let R(y(x)) be defined the saune way. Assume yi(x) [ 0,11 and z(x) [ {0,1 1
then

R(y(x)) I R(y,(x)) " R(y 2(x)). (4)

Proof: We need only to prove that if both y1 (x) and Y2 (x) mis-classify a given

feature vector x, then y(x) can not give correct classification on x. Since the
correct classification output z(x), the combined output y(x). and individual
classifier output y,(x) and Y2 (x) are ll binary vectors of the same dimension, if
both classifiers mis-classify a given feature vector x which belongs to class c, we
must have. for the cth elements of these binary vectors,

zc(x)&Y l c (x) = z,(x)&y2,(x) = 0

where "&" is the "exclusive-OR" operator in Boolean algebra. Since from eq. (3),
g1 (x) + g2(x) = 1, we conclude y,(x) = t if y j(x) = Y2,(x) = 0. and yQx) =1 if

yl,(x) = Y2c(x) = 1. Hence zc(x)&yc(x) = 0. In other words, y(x) must also mis-
classify the same feature vector x regardless the choice of g1c(x) and tc) (x). This
is to say if x { R(y, (x)), and if x I R(y2(x)), then x 1 R(y(x)). n
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The implication of theorem 1 is that maximum performance enhancement of
a mixture of experts approach occurs when R(yl(x)) ( R(y 2 (x)) = 0 (empty set).
An example is to designate each classifier to be responsible for classifying a
particular class. The assumption that yi(x) [ [0,1} is essential in this theorem. If

yi(x) [ [0, 1] (interval between 0 and 1), it is possible to find a counter example.
Let yl(x) = [ .1 .5 .4], Y2(x) = [.5 .1 .4], and z(x) = [ 0 0 1]. Then y(x) = [0.1g 1

+ 0.5g 2 0.5gI + 0.1g 2 0.4]. If g1 = g2 = 0.5, then y(x) = [0.3 0.3 0.4] which
yields correct classification.

On the other hand, regardless whether yi(x) take binary values, if both
classifiers made correct classification, so will the combined classifier.

Theorem 2. With the same definitions is in theorem 1, and yi(x) [[0, 1],

R(y(x)) 1 R(yI(x)) (R(y 2(x)). (5)
max MaxProof: Assume x [ class c*, and ylc,(x) = c Yl c (x), y2c,(x) c Y2c(x)-

Then
=maxhc*(x) = g1(x)ylc*(x) + g2 (x)y2c*(x) = [gl(x)yl(x) + g2(x)y2,(x)] (6)

Thus the output yc*(x) is correctly classified. n

>From theorem 2, it is clear that if both classifiers #1 and #2 correctly classify a
pattern x, then the combined classifier will also correctly classify the saune pattern.
Hence this pattern can be excluded from the user-adaptation training set as it will
not affect the result.

Adaptation Algorithm

Based on the result indicated in theorem 1, and theorem 2, the design
objective of the mixture of experts network in eq. (3) is to devise a training
algorithm to estimate the parameter vectors {vi; i = 1, 2}. Given that y,(x) and
Y2 (x) are fixed classifiers, this problem can be solved by a gradient procedure as

follows: Let us assume {xk: I <_ k _< K', xk[ XI be a set of training data used for

searching the optimal gating functions g,(x) and g2(x) such that the square error at
K'

the output E = (I/2K')l Ilzk-y(vl,v 2 ,xk)lI2 is minimized. A gradient search
k=1

algorithm can be devised as the following:

vi(t+l) = vi(t) - lt Vvi E (7)

The initial values of vt and v2 are set to be the centroids of the regions R(yl(x))
and R(y 2(x)) respectively for x in the user-specific training data set. The gradient

of E with respect to vi can be calculated as:
C K'

Vvi E = (I/K')l I [yc(Vl v 2,xk)-zkc*] Vvi Yc(vl,v 2,xk) (8)
c=l k=1
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K' C 2
= (1/K')l £ { [Yc(Xk)-Zkff(hc(xk))[• Yjc(xk)OVvi gj(vlv 2 ,xk)] } (9)

k=1 c=l j=l

where h(x) = gl(x).Y1 (x) + g2(x).y 2(x), In (7), we assumed the transfer function f

is a differentiable threshold function, and is applied to a vector element by element.
Finally, with eq. (3), we have

2

Vvi gj(vl,v 2 ,xk) = Vvi exp(vlxk)/ t exp(vt x
= en =v k )

t -2 t t t
Vvi[exp(vJxk)]'.Lm =lexp(vmxk)-exp(vixk)*Vvi exp(vixk)

- 2 t 2

lexp(vmlxk)]

= (-1)ij xkog 1 (xk)Og 2 (xk) (10)

Hence, for i, j [ { 1, 2}, i ;6 j, we have

K' C
Vvi E = (1/K') £xk { [yc(xk)-zkc] of(hc(xk))• [yic(xk)-Yjc(xk)-g 1(xk)°g2(xk).

k=l c=1

Note that in above derivation, the error E is accumulated over the entire epoch (K'
feature vectors). The summation over k may be removed if we use on-line update
of vi's for each sample. This yields the following expression: for i, j [ 11, 2 ,i 7J j,

Vvi E = xk.[y(xk)-zk1t.diag{f(h(xk))}o[yi(xk)-yj(xk).gl (xk).g 2(xk) } (11)

Clearly, we have VvI E = -Vv 2 E. This is not surprised because with two

parameter vectors facilitate a decision hyperplane (v1 - v2)t x = 0.

Until now, we have assumed that the user-specific ECG beat classifier Y2 (x)
is readily available. In reality, it needs to be trained with the user-specific training
data set. On the other hand, the combined classifier y(x) needs also be trained by
the same data set in order to determine the gating network parauneters. Therefore, if

Y2 (x) is trained with 100% correctness of the user-specific data set, then the gating
network of choice may be that g2 (x) # 1, and g,(x) # 0. In light of the results of

Theorems 1 and theorem 2, we devised the following strategy to alleviate this
problem: First, we construct the user-specific training data set to contain only
those feature vectors which the original classifier misclassified. We further
partition this training data set into two subsets. One for the training of the user-
specific classifier Y2 (x), and the other for estimating gl(x) and g2(x).

Experiment Results

ECG Data Sets and Feature Vectors

For this study, ECG data was acquired from a MIT/BIH arrhythmnia
CDROM database[14, 15]. The database includes 48 fully annotated two-channel
ECG records of 30 minutes duration each. In this study, we selected 33 records out
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of the 48 records to investigate the problem of PVC (premature ventricular
contraction) beat detection. The data was sampled at 360 Hz with 12 bits/sample
resolution. The annotation file for each record specifies the type of ECG beats,
rhythms, and their corresponding time coordinates. Four classes, N (normal), V
(ventricular ectopic beat, ventricular premature beat, R-on-T ventricular premature
beat, or ventricular escape beat), F (fusion of ventricular and normal beat) and Q
(unknown, others) are used in this work.

Each ECG beat is represented by a 51-point template extracted from the
ECG record (first channel only), centered at the peak of the QRS complex, and
extends 25 points to each side. This 1 by 51 vector is then normalized to have a
dynamic range between 0 and 1. In addition to the morphological features, we also
incorporate four temporal features: the instantaneous R-R interval, the average R-R
interval, the difference between the instantaneous and average R-R intervals and the
width of the QRS complex. Thus the feature space dimension is 55.

Incremental Training of a Trained Modeling SOM/LVQ Network

A classifier was developed using Kohonen's self-organizing map(SOM) and fine-
tuned with Learning vector quantization(LVQ). In the testing phase, the classifier's
performance was observed to improve with supervised fine tuning of the classifier
with the first five minutes of data from each record. For the record#121, the
classification rate improved from 96.61% to 99.74%. However, to overcome the
need to have an annotation file of the data, an unsupervised clustering algorithm
was used to cluster the data and label the clusters with the original classifier. The
labeled clusters were then used to fine-tune the original classifier, improving it's
performance. The performance results on MIT/BIH record#121 with this technique
provided an accurate classification rate of 99.81%. In another example, with
record#201, the classification rate improved from 90.87% to 90.98%.

Mixture of Experts Approach

In the mixture of experts approach, the clusters developed with an
unsupervised algorithm constitute a second classifier 'local expert'. The output of
this classifier is threshold to provide a classification output only when the inputs
fall within the threshold region of the clusters, else the classifier declares that, it
has not seen that input before. A gating network was then trained to weigh the
outputs of the original classifier and the local expert. A classification rate of
96.54% was obtained for record #121 using the gating network. For record#201, a
classification rate of 92.33 % was obtained which is a significant improvement over
the previous method. This result indicates that there is a potential for improvement
in accurate classification rates using the method of mixtures. More extensive
experiments are being performed to evaluate the complete database using this
method.
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ABSTRACT

Visual identification of saccades in electrooculographic (EOG)
recordings of smooth pursuit eye movements (SPEM) is a very time
consuming process for the individual experts. Algorithmic approaches to
overcome this problem automatically produce high rates of false positive
errors. Artificial neural networks (ANN) are excellent tools for pattern
recognition problems when signal to noise ratio is low. An automated
decision process based on modified raw data inputs showed successful
proceeding of a backpropagation ANN with an overall performance of
87% correct classifications with previously unknown data. Investigating
the specific influences of prototypical input patterns on a specially
designed ANN led to a sparse and efficient data coding, based on a
combination of expert knowledge and the internal representation
structures of the ANN. Data coding obtained by this semiautomated
procedure yielded a list of feature vectors, each representing the relevant
information for saccade identification. The feature based ANN produced
a reduction of the error rate of nearly 40% and reached an overall
correct classification of 92% with unknown data. The proposed method
of extracting internal ANN knowledge is not restricted to EOG
recordings, and could be used in various fields of signal analysis.

INTRODUCTION

Electrooculographic recordings of smooth pursuit eye movements (SPEM)
are signals with the typical problems of most biologically generated signals.

0-7803-2739-X195 $4.00 © 1995 IEEE
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A great amount of noise combined with additional biological artefacts not
generated by the eye movements themselves are the prominent disturbing
factors. Similar data qualities are EEG and ECG recordings. The
identification of saccades in SPEM recordings suffers from similar
limitations, and most scientists identify them by visual inspection of the data
[4,8]. There are no definite rules which could be used for a knowledge based
identification algorithm for an automated analysis.
In recent years artificial neural networks (ANN) demonstrated good
classification properties when used with data of low signal to noise ratio
[1,5].They are especially promising in situations where the rules for a
decision are only given by expert knowledge without a clear algorithmic
strategy. It was the aim of the present investigation, to classify saccades in
SPEM recordings with an ANN and to show the importance of data coding
for the classification quality. In a first step a raw data based decision model
was examined. Even with raw data it is necessary and useful to take into
account all serious information about the decision problem. Since saccades
are errors in a SPEM task, a time point when saccades are expected cannot be
specified. This is opposite to event related potentials in EEG recordings,
where a known and controlled stimulus to determines the interesting epoch of
the recorded data. For an effective presentation of the data to an ANN, a shift
invariant process of pattern identification is needed. In this process all
possible target patterns have to be detected. Then in a further step the ANN
could be used as a classifier, like in situations with a trigger stimulus. The
developed raw data coding was shift invariant regarding the time axis, and
quality oriented regarding the amplitude values. Other clinical studies with
similar data and identification problems have shown the usefulness of feature
oriented data coding and presentation [2,6]. A central problem in developing
sufficient feature lists is to know a priori, which part of the raw data holds
relevant information. Since there was diverging information about this step
an objective determination process was followed. It is possible to extract
information about the internal decision process of an ANN [9]. In order to
produce efficient data coding the influence of individual parts of the raw data
vectors on the network decision was thought to give useful information for
the development of an effective feature list. An automatically guided,
interactive way of knowledge extraction realized the production of an
objective and efficient data coding scheme.

METHODS

This study used data obtained in clinical studies of the Psychiatric Hospital of
the University of Munich [3]. The subjects were instructed to follow a
horizontally moving target with smooth pursuit eye movements (SPEM).
Data were recorded using electrooculography (EOG). Data of 20 subjects
were selected. After digital low pass filtering at 15 Hz, the resulting data
were stored in epochs of 1.28 s (320 data points, 250 Hz sampling rate). This
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is the time the target takes to move across 22 degrees of the visual field.
Since saccades are fast movements interrupting the slow phase of smooth
pursuit movements, it was necessary to examine the velocity of the horizontal
eye movements. To this aim a numerical differentiation method was used,
calculated by a two point central difference quotient. 1354 possible saccadic
events were identified and classified by experts, to have a gold standard for
the training and testing of the ANN. They were divided in two groups, 903
training and 451 test vectors.

ANN oriented data preprocessing

A threshold of 50'/s peak velocity was considered to be necessary for the
existance of a possible saccadic movement. The velocity channel was
scanned and vectors with 69 data points for each possible saccadic event
were produced. They all contained the same number of data points prior and
after the point of maximum velocity. All data were scaled, namely to have a
qualitatively oriented approach versus a quantitative determined information
processing. The interval (mean velocity, maximum velocity) was transformed
into (0, +1) and a raw data point located outside was scaled into the outside
range of the (0, +1) intervall respectively. Before these data were presented
to the network, two context variables, the standard deviation and the mean
velocity of the eye movement velocity of a whole set of 320 data points
containing the possible saccadic event were added to each vector. This was
done because reliable context information is said to have significant effect on
the learning of the network [10].

Raw data ANN decision

ANN simulation was done using NeuralWorks Professional II Plus. For the
presented data, an ANN with 71 units in the input layer, various units in the
hidden layer (2 to 15) and a single output unit was constructed, and trained
with a backpropagation algorithm [7]. An additional bias unit was integrated
into the network, with constant numerical input of 1 and variable connections
towards all units in the hidden layer and the output layer. The desired or
actual output of 0 and 1 represents the absence respectively the presence of a
saccade in the possible saccadic situation.

Raw data network decision strategy analysis

We trained a network with only two hidden units to realize two effects of
further data processing. On the one hand the network was forced to build up
a high degree of generalization, on the other hand we obtained the possibility
to create a visualization of the hidden layer activity in a two-dimensional
cartesian coordinates system. The position of individual patterns in the
hidden unit space was calculated from the scalarproducts of the input vector
P=(p...p , ) and the weight vectors WhI =(WhI1I . WhIn ) and
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W1 2 =(w1,21  n Wh2,) attached to the hidden units. This led to the following
individual hidden layer pattern of the input vector P

H(P) =( Z p iwhi Y P ili'h2i)

respectively

Hir,.•.,r(P) =( tanh( Y p iWvi ) , tanh(E p i4'h 2) )

to obtain the pattern, with each component individually transferred into the
range of( -1, +1). The network was trained with a modified backpropagation
algorithm, combined with a consequent purging of connections. Connections
with an individual absolute weight value of less than 10% of the maximum
absolute weight value of all connections were disabled from learning, and set
to zero. This forced the network to concentrate on relevant information of the
input data. The influence of specific qualities of the prototype patterns on the
desired hidden unit activation was evaluated, and we obtained a list of feature
vectors, that were used as input data for a new ANN.

RESULTS

Raw data ANN performance

The gold standard of the experts visual classification showed about 70%
(963/1354) saccades in all possible events, which were equally distributed in
the training and test set. The raw data ANN reached an overall classification
rate of 98,45% on the training set. 636 of 641 saccades were correctly
identified (false negative rate: 0,78%) and 253 of 262 nonsaccadic events
were correctly rejected (false positive rate: 3 ,4 4 %). This shows that
information was extracted in order to decide whether an input pattern is a
saccade or not. With the untrained data in the test set the network correctly
classified 87,36% test patterns, resulting in a false positive rate of 27,48%
(36 of 131) and a false negative rate of 6,56% (21 of 320).

Feature list resulting from the raw data ANN decision strategy analysis

In Fig. 1 the hidden layer activation is displayed, in which the correctly
classified saccadic patterns form a coherent set in the second quadrant of the
coordinates system. Furthermore, there exist two clusters of nonsaccadic
patterns, located in the first and third quadrant of the coordinates system. A
correctly classified nonsaccadic pattern required at least one hidden unit
activation in an opposite direction than the saccadic patterns. Two main
groups could be found, nonsaccadic artefacts group A (ht .... 1,. Y 1<0 ,
h,,f, 2<0) and a group B (h,,, ,,,• 1>0 , h,,j,! 2>0), see [Fig. la].
Especially in the transferred version one can observe the linear seperability
of the displayed set, the need for a successful decision process in the
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remainig part of the ANN, a kind of linear perceptron. The individual
location of the pattern relative to the linear function h2=J,O12*h1 +O,953
representing the ANN decision, shows the resulting classification [Fig. I b].
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FIGURE 1. HIDDEN LAYER ACTIVITION
a) Cumulated weighted input (Saccades *, nonsaccadic patterns 0,

prototype patterns +) b) Transfered hidden unit activation (Saccades *,
nonsaccadic patterns 0, ANN decision function - )

The intragroup means of the maxima and minima amplitudes, and the
medians of the latencies corresponding to the individual oscillations were
calculated. Due to the sinusoidal nature of EOG data the resulting points
(medians on the time axis and means on the scaled velocity axis) were
interpolated by parts of cosinus waves, to attempt a smooth, i.e. a
el function of the prototype patterns. We focused our interest on the

relevance of these extrema for the network decision.
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Which parts of the prototype patterns, and probable of the individual
patterns, are responsable for the fact, that the hidden unit activation located
the patterns in the different quadrants of the coordinates system? To get an
insight in the process the interaction of the quality of the raw data vector, or
in other termini, the activation of the input units and the weight vectors Whi

and W,1, had to be examined. The central sectors of the typical saccadic input
pattern and nonsaccadic patterns e.g. showed the different effects on the
activation level of the hidden units [Fig.2].

hidden unit I

> ,

0

., .L / , C

.-48 -24 t-mx 24 48 (ins)

a)

the atof hidden unit Io

b I - - ) o g A i arte- a -- - iS

f a i

regIonpu of thecmaindea -)fro 20ou Bs beorethepoinrteofamaximfumelocit up

tot12hesbehindut units [ig. proaoty l P ositiveeiht e cnnets, ied wit tyc

region of the mn pk fmsb

tho 12t ms bhinde uit [Fig 2accde(.-,) Poi fv wegroup ar onnccdcatedfacth typical

b)Inu o Scad (- -- , fgrupAnosccdi rtfat(-- ) ifleceo



negative inputs, e.g. the intervall of 32 ms til 44 ms behind the main peak.
Controversely the nonsaccadic group B artefact required an exhibtion of the
first hidden unit. The first minimum before the main peak produced a strong
exhibition due to the negative input values and the negative weights attached
with the corresponding interconnections. Depending on the shorter latency of
the first maxima appearing after the main peak, the positive weights in the
region of 32 ms up to 44 ms behind the main peak produced further
exhibition of the first hidden unit, whereas the saccadic pattern inhibited the
hidden unit on these interconnections. The first maximum before the main
peak in the region arround 44 ms in front of the main peak showed positive
influence on the first hidden unit activation.
To classifly an input pattern as a saccade the second hidden unit required a
positive activation [Fig. 2b]. The input values starting 4 ms before up to 24
ms behind the point of maximum velocity produced a large part of this
desired positivity. The possible negative activation due to the positive
weights in the regions of the surrounding minima (-44 ms to -24 ms and
+28 ms to +44 ms) was less important respecting the small negative input
values. The nonsaccadic artefact of Group A, however, inhibited the second
hidden unit namely because of the intensive minima surrounding the main
peak (-40 ms to -20 ms and +16 ms to +44 ms). The positive influence of the
main peak was less important since there were fewer exhibiting data points
compared to the inhibiting ones, as well as the wider activating effect of the
saccadic input pattern.

TABLE 1. SCORING OF THE EXTREMA
BASED ON THE RAW DATA ANN DECISION STRATEGY

Extrema vmax min 1 min -1 max_1
Influence score 31 31 18 13
Importance ranking 1 1 2 3
Variable types v,t,t,c,c v,q,t,c,c v,q,t q,t

Extrema min -3 min 3 max -1 min 2
Influence score 11 10 8 8
Importance ranking 3 3 3 3
Variable types q,t q,t q,t q,t

Extrema max_2 min 4 min -2 max -2
Influence score 8 6 5 3
Importance ranking 3 4 4 4
Variable types q,t q q q

v = absolute velocity variable, q = scaled velocity variable, t = time variable,
c = combined variable
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An importance ranking concerning the individual impact of the single
oscillation of the prototype patterns on the hidden unit activations was
developed. It depended on the number of raw data points with desired
influence on the hidden unit activation. According to the degree of
importance, different numbers of variables were added to a feature list,
concerning the quality of a possibly saccadic input pattern. Five categories of
influence qualities were derived. According to the degree of importance,
different numbers of variables were added to a feature list, concerning the
quality of a possibly saccadic input pattern. All parts of the entire pattern
with an influence score of two or less were eliminated from the variable list.
The result was a feature list consisting of 28 descriptive variables, each
representing a specific quality of the input pattern. After determining the
number of influence variables the experts decided about the individual
outlook of these, depending on the way they might influence the decision
[Table 1]. Three additional context variables were added, containing
information about the noise in the surrounding of the main velocity peak
(two intervals of 100 ins before and behind the peak) and one with
information about the complete raw data pattern. So each possible saccadic
input pattern was represented by a feature vector consisting of 31
components of qualitative and quantitaive description. Due to the smaller
number of interconnections and input variables the network produced a
higher degree of generalization and less memorizing of qualities of single
raw data input pattterns.

Feature data ANN performance

Using this feature vectors of the same 903 events we trained a network with
31 input units and a similar architecture as before. One major effect of the
sparse coding of the input data was a nearly independent behaviour
concerning the number of processing elements in the hidden layer. The
change of the overall classification rates of the test and training set was very
small, no matter if the hidden layer consists of 2 or 9 hidden units.

TABLE 2. CLASSIFICATION RATES FOR THE FEATURE BASED ANN

Classification rates Training set Test set

fase positive 4,20% (11/262) 10,69% (14/131)
false negative 1,40% (9/641) 6,88% (22/320)
overall correct
classification 97,79% (883/903) 92,02% (415/451)

The overall classification rate for a 7 hidden unit ANN was 97,79% on the
training set. This showed the information density of the derived feature list,
since the result was nearly the same as in the raw data approach. The main
effect of the smaller ANN was a better generalization capability resulting in a
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better overall classification rate with the unknown test data (92,02%)
[Table 2]. A significant reduction of the false positve errors was observed,
namely 10,69% (14 of 131) instead of 27,48% (36 of 131) in the raw data
decisions. The false negative errors (22 of 320) were nearly the same as in
the raw data ANN (21 of 320).

DISCUSSION

The results obtained with a raw data ANN to identify saccades in SPEM
recordings showed encouraging results. The problem of a standard ANN
application of this type is, that the system is used as a black box mechanism.
Even if a priori knowledge about the decision process is available it is nearly
impossible to use it for a better performance of the system.
The way of analyzing the internal structures of the resulting ANN described
in this study leads to a solution not restricted to the black box mechanism.
The a priori knowledge about the examined situation was very useful to find
a new way of preprocessing SPEM data. But not only the a priori knowledge
of the experts is used for the development of an optimal representation of the
examined patterns. Asking the individual experts which part of the raw data
curves should be considered critical, they always preferred the main peak and
the nearest neighbourhood behind the main peak. No one respected the
possible influence of other parts ahead of the main peak in his introspective
description of the decision process. The network showed various parts of
influence, located both before and after the main peak. It is unclear if the
human experts actually use this information in their decision process. The
internal structure of the network objectively shows which data points are
important and which are not, and the proposed way shows how to extract this
information. The more objective knowledge is available the better and easier
the overall representation of the patterns could be managed. If there is an
objective and sparse representation used as input data for an ANN, the
generalization properties are used in a more effecient way than this could be
done if useless data is presented or if relevant data is missing. The improved
performance of the feature based ANN showed the advantages of the sparse
data coding compared to the raw data situation. A further advantage is less
training time and less processing time of smaller networks due to less but
better input data. The proposed method is not limited to SPEM data, since
there are no specific processing steps that could not be applied to other
classification problems. In each step of signal based classification problems,
there is a large amount of available expert knowledge. This could be used in
different steps of the overall analysis as could be demonstrated in this study.
Therefore, the use of ANN in pattern recognition is not only restricted to a
black box machine model. Existing knowledge could be integrated in all
steps of the automated processing.
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Abstract

If several mental states can be reliably distinguished by recogniz-
ing patterns in EEG, then a paralyzed person could communicate to a
device like a wheelchair by composing sequences of these mental states.
In this article, we report on a study comparing four representations
of EEG signals and their classification by a two-layer neural network
with sigmoid activation functions. The neural network is implemented
on a CNAPS server (128 processor, SIMD architecture) by Adaptive
Solutions, Inc., gaining a 100-fold decrease in training time over a Sun
Sparc 10 for a large number of hidden units.

1 INTRODUCTION

Computerized analysis of EEG signals has evolved over the past three decades
[5] with much of the effort directed towards a better understanding of the func-
tioning of the brain. The work reported here has a different goal-to extract
information from EEG signals with which mental states can be discriminated
and thereby serve as a mode of communication for a paralyzed person. In the
literature, we find two approaches towards this goal.

One approach is based on the discovery that a characteristic signal appears
in the EEG approximately 300 ms following the occurrence of a relatively rare,
but expected, stimulus. Such signals are referred to as event-related potentials,
or ERP's. An example of how ERP's can be used to communicate with a com-
puter is the work of [3], who used ERP's to detect which letter of the alphabet a
human subject wished to select. This kind of interaction between a person and

0-7803-2739-X/95 $4.00 © 1995 IEEE
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stimulus device is currently too cumbersome and slow to be useful in a real-time
control application.

Much more practical would be a system for detecting patterns in normal
EEG without the aid of an external stimulus device. This is the second ap-
proach, often referred to as spatial analysis, because patterns are sought in EEG
signals simultaneously recorded from multiple electrodes. A number of stud-
ies have found differences in the power of the alpha band (8-13 Hz) in sig-
nals recorded from left and right hemispheres, depending on the tasks [4, 2, 9].
Asymmetries were most reliably found for motor tasks. In a recent study, [11]
used a frequency-based representation of EEG from two electrodes to obtain
85% accuracy in predicting movements of the finger of a subject moving ajoy-
stick left or right.

The detection of patterns in EEG produced from normal mental states is a
very difficult problem. EEG signals are recorded by surface electrodes and can
contain noise as a result of electrical interference and movement of the elec-
trodes on the scalp. Another problem is that EEG can be corrupted by eye blinks
and other muscular activity that produce signals of greater magnitude than pro-
duced by cortical activity. Other problems are more cognitive in nature; the
concentration of a person can vary while the person is supposedly performing
a single mental task.

The work described in this article is based on previous work [7] using a
Bayesian classifier trained and tested on a small subset of data recorded from
subjects performing several mental tasks. We extended their study by 1) replac-
ing the Bayesian classifier with neural networks of various sizes trained using
error back-propagation, 2) using all of the data from each recording session, and
3) testing four signal representations. The objective of these experiments was to
determine which of the four representations results in the best classification ac-
curacy. If the information needed to discriminate mental state can be extracted
from the unprocessed EEG signals, or at most preprocessed by projecting to a
relatively small number of principal components, then we can dispense with
other forms of preprocessing, such as the frequency analysis used in [7].

In one other study [10] neural networks were applied to classify EEG sig-
nals collected in a paradigm similar to that of [7]. Kohonen's SOM algorithm
[8] was used to train a matrix of units to identify clusters of similar patterns
and associate each cluster with a particular mental task. They trained their clas-
sifier on data for all tasks performed by one subject in one recording session
and tested the resulting classifier on data from other sessions and other sub-
jects. Most tests showed very poor classification accuracy, though the accuracy
tended to be higher for some tasks, particularly the mental arithmetic task de-
scribed in the next section.

In Section 2, we describe the methods used to collect, process, and classify
the data. Results of experiments with data from a single subject and a pair of
tasks are shown in Section 3 and conclusions are discussed in Section 4.
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2 METHOD

2.1 DATA COLLECTION

All data used in this study were recorded during the previous study [7]. Se-
lection of the set of mental tasks was guided by [4] whose results showed de-
tectable hemispheric differences for certain tasks. Here we focus on two tasks:

Baseline-Alpha Wave Production The subject is asked to relax and try to
think of nothing in particular. This will be considered to be the baseline
session for alpha wave production, and other asymmetries.

Mental Arithmetic The subject is given a non-trivial multiplication problem
to solve and, as in all of the tasks, is instructed not to vocalize or make
overt movements while solving the problem. An example of such a task
would be to multiply the numbers 49 times 78. The problems are non-
repeating and designed so that an immediate answer is not apparent.

Subjects were seated in a sound-proof, dimly-lit, room. As shown in Fig-
ure 1, electrodes were placed at 01, 02, P3 , P 4 , C 3 , and C4, standard elec-
trode locations in the 10-20 System [6]. The electrodes were connected to Grass
7P511 amplifiers that bandpass filtered the signals at 0.1-100 Hz. The EEG sig-
nals were sampled at 250 samples per second and digitized with 12 bits of ac-
curacy. Data was recorded from each subject for a duration of 10 seconds while
the subject was performing a single task with their eyes open. Each session re-
sulted in 250 samples/second x 10 seconds x 6 channels, or 15,000 values. For
the experiments reported here, artifacts, such as eye blinks, were not removed.

Channel

P
3

P

2

P4

Pattern 1 2 3 4 5 . 79

Time I 10 seconds

Figure 1: Location of the six surface electrodes and division of the six time se-
ries into overlapping quarter-second windows. (Data shown is fictitious.)

2.2 UNPROCESSED REPRESENTATION

In [7] it was found that quarter-second segments of the 10 second data resulted
in classification accuracy approximately the same as that obtained from two-
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second segments. Therefore, we divided the data into 79 overlapping, quarter-
second segments consisting of 62 samples from each of the 6 channels, or 372
values per segment, as shown in Figure 1. We collected 79 such patterns from
one subject performing the baseline and mental arithmetic tasks 10 times each,
for a total of 1,580 patterns,

It is generally believed that frequencies above 40 Hz convey little informa-
tion related to mental state. To test this, a second unprocessed representation
was created by applying an FIR lowpass filter with a cut-off frequency of 40
Hz. This was followed by down-sampling by a factor of 2 to reduce the num-
ber of data samples by half, resulting in an effective sampling rate of 125 Hz.
Pre-filtering is required to prevent aliasing.

2.3 K-L REPRESENTATION

When classifying high-dimensional data, equivalent or better generalization ac-
curacy is often achieved by classifying data obtained by projecting the orig-
inal data onto the first n eigenvectors, where n is much smaller than the di-
mensionality of the original data. To perform this Karhunen-Lo~ve decomposi-
tion (K-L), the covariance matrix of the mean-subtracted set of the 1,580, 372-
dimensional, patterns was calculated.

The number of eigenvectors to project to can be chosen empirically or de-
termined by examining the eigenvalues. One estimate of dimensionality is the
global Karhunen-Lo~ve estimate, given by the index i for which Ai/Amaj, <
0.01, where the Ai are in decreasing order for i = 1, 2,.... For the baseline
and mental arithmetic data used in our experiments, i = 50. Therefore, the K-L
representation was formed by projecting each 372-dimensional pattern onto the
first 50 eigenvalues.

2.4 FREQUENCY-BAND REPRESENTATION

In [7] features were extracted from spectral density estimates using asymmetry
ratios given by (R - L)/(R + L), where R is the area under the spectral density
curve of a right hemisphere channel for a specific frequency band and L is de-
fined similarly for the corresponding left hemisphere channel. These asymme-
try ratios were calculated for each possible right-to-left combination of channels
and for each of four frequency bands: delta (0-3 Hz), theta (4-7 Hz), alpha (8-13
Hz), and beta (14-20 Hz). This results in 36 asymmetry ratios. In addition the
24 power values themselves (R and L) were added for a total of 60 features. In
the current study, the spectral density was estimated from autoregressive (AR)
parameters calculated using the Burg method [12]. An AR model of order 6 is
used here since it yielded good results in [7].

2.5 CLASSIFICATION

Classification was performed by fully-connected, feed-forward neural networks
with single hidden layers of varying size. All units use an asymmetric sigmoid
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activation function. The work reported here involved a single pair of tasks, the
mental arithmetic and baseline tasks, so the networks require only one output
unit. An output value greater than 0.5 represents the mental arithmetic task and
a value less than 0.5 represents the baseline task. The target value for the output
during training is set to 0.9 for mental arithmetic and 0.1 for baseline.

Our data was obtained from ten different 10-second recording sessions for
each task, so it naturally divides into ten parts. We trained on eight parts, used
a ninth part as a cross-validation, and tested on the tenth part. These three parti-
tions were used as follows. The network is trained on the training set for a given
number of epochs. After each epoch, the RMS error for the current network is
calculated for the cross-validation set. After training, the weights for the epoch
at which the cross-validation error was lowest are obtained and the RMS error
of the network using these weights is calculated for the test set. This test error
is the estimate of how well the network will classify novel data. Thus, we train,
cross-validate and test on data from different recording sessions. With ten parts,
we can choose 90 different pairs for cross-validation and testing. The results in
the next section are averages over 90 runs constructed in this way.

Training was performed with the bnl ib error back-propagation library on
a 128-node CNAPS Server II from Adaptive Solutions, Inc.. [ 1] present details
of the implementation. The CNAPS implementation ran for 4 minutes to train
a 40 hidden unit net for 1,000 epochs on the unprocessed data representation,
whereas a Sparc 10 required about 9 hours, over 100 times longer.

Networks were trained on the training data until the squared error for 200
successive epochs did not decrease. The epoch at which the squared error on the
cross-validation data was at a minimum was identified, and the network was re-
trained to this epoch, starting with the same initial weights. At this point the net-
work's weights were written to a file. All of this was performed on the CNAPS
hardware. The network was evaluated on a Sun Sparc by calculating the num-
ber of test patterns classified correctly. A pattern is said to be correctly classified
if the network's output falls on the correct side of 0.5.

3 RESULTS

Table 1 shows the results of all classification experiments as the average per-
cent of test patterns classified correctly, out of 158 patterns for all but the un-
processed, 125 Hz, representation, which consisted of 154 patterns. This table
includes 90% confidence intervals, based on 90 repetitions.

Clearly the best classification accuracy is achieved with the frequency-band
representation, giving an average accuracy of about 74% for a network with 40
hidden units, though the accuracy varies little for other network sizes, including
a network with a single hidden unit. This shows that the dependence between
the signals in the various representations and the correct classification is pri-
marily linear on average. The performance of the raw and K-L representations
is significantly lower, ranging from 50% to 53%. These results suggest that the
energy within standard frequency bands is more useful in discriminating the two
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Hidden Unprocessed Unprocessed
Units (250 Hz) (125 Hz) K-L Frequency-Bands

40 53.2 4 0.6 51.1 4- 06 51.7 ± 0.6 73.9 ± 0.7
5 52.8 - 0.6 52.1 ± 0.8 51.8 ± 0.7 72.9 ± 0.6
i 52.1 ± 0.5 52.1 ± 0.7 50.4 ± 0.5 73.1 ± 0.6

Table 1: Percent of test patterns classified correctly for different sized networks
and different signal representations.

mental tasks than is the raw data. or dimensionally-reduced data. This hypoth-
esis must be tested by further experimentation. It appears that the performance
of the raw and K-L representations is increasing with network size, but the dif-
ferences are not statistically significant. We have not yet tried networks with
more than 80 hidden units-

The results reported above dealt with each quarter-second segment in iso-
lation. One way to consider more than one interval is to average the output
of the network over successive segments. We have investigated this using the
frequency-band representation for one combination of training, cross-validation,
testing data and obtained the following preliminary results.

Table 2 shows how the number of successive quarter-second segments over
which the network output is averaged affects classification accuracy. For the
mental arithmetic task, only five segments are needed to get 100% classifica-
tion accuracy for the single test data set considered. However, 28 successive
segments were required to get 100% accuracy for the baseline task. Thus, cor-
rect discrimination between baseline and mental arithmetic could be achieved
by averaging over 28 successive segments, or about 3.6 seconds (1/4 + 27 x
1/8).

One hypothesis for this difference is that a subject performing the baseline
task is less focused on a particular set of mental states than is a subject perform-
ing the mental arithmetic task. Plots of the network output, averaged over five
segments, is shown for both tasks in Figure 2. Recall that the target for the net-
work's output for the mental arithmetic task is 0.9, while for the baseline task it
is 0. 1. These plots suggest that while performing the baseline task, the subject's
mental state varied considerably. During the middle of the 10 second recording
session, the subject's mental state more resembled the mental arithmetic state
than the baseline state, using the frequency-bands representation.

When this process of averaging over successive segments is repeated for
different groupings of the data into training, validation, and test sets, we oc-
casionally find cases for which the classification accuracy does not converge
on 100% as more segments are averaged. We are currently performing exper-
iments to determine the average accuracy over different groupings of the data.
Preliminary results indicate that the accuracy on average converges near 90%
accuracy as the averaging is extended to cover full 10 second recording period.
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Number of Mental
Successive Arithmetic Baseline
Segments Task Task

1 79% 67%
2 88 76
3 92 84

4 93 78
5 100 81

27 100 98
28 100 100

Table 2: Percent correct when network output is averaged over successive seg-

ments.

0.8:8 Mental Arithmetic Task 0.8-: Baseline Task

Average
Network 0.5 --................................... ............-- . 0.51 .... .................................

Output V

0.2-1 0.2-1

1 10 1 10
Seconds Seconds

Figure 2: Network output using frequency-band representation averaged over

five successive segments.
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4 CONCLUSIONS

The frequency-based representation resulted in significantly more accurate clas-
sification than the unprocessed or K-L representations. A second conclusion
from this study is the utility of the parallel implementation of the error back-
propagation algorithm. A much greater number of network sizes and initial
weight vectors could be evaluated on the CNAPS server than could be com-
pleted in a comparable amount of time on a serial machine.

The practicality of this result is limited by the long period, 3.6 seconds, that
was required to get reliable ciassification. This is too long for use in controlling
a wheelchair. However, this estimated time period is conservative, because av-
erages were over quarter-second segments that overlapped only by an eighth
of a second. Instead, the network output could be calculated for all quarter-
second segments, with successive segments overlapping by one time sample,
or 1/2 5 01h of a second. This might reduce the length of the data sample needed
to reliably discriminate tasks.

We are currently studying other representations, including AR model coef-
ficients, Hidden Markov Models, LVQ, and "bottleneck" networks to perform
nonlinear principal components analysis. Generalization studies across sub-
jects with additional tasks are being performed.

Acknowledgements

The authors would like to thank Jorge Aunon and Zachary Keirn for providing
the EEG data, Ed Orosz for installing and interpreting the data. This research
was funded by the National Science Foundation through grant IRI-9202 100.

References

[1] Charles W. Anderson, Sai Devulapalli, and Erik Stolz. Determining men-
tal state from EEG signals using neural networks. Scientific Programming,
to appear.

[2] J. C. Doyle, R. Ornstein, and D. Galin. Lateral specialization of cognitive
mode: II EEG frequency analysis. Psychophysiology, 11:567-578, 1974.

[3] L. A. Farwell and E. Donchin. Talking off the top of your head: Toward
a mental prosthesis utilizing event-related brain potentials. Electroen-
cephalography and Clinical Neurophysiology, 70:510-523, 1988.

[4] D. Galin and R. E. Ornstein. Hemispheric specialization and the duality
of consciousness. Human Behavior and Brain Function, 1973.

[5] Alan S. Gevins. Overview of computer analysis. In A. S. Gevins and
A. Rdmond, editors, Methods of Analysis of Brain Electrical and Mag-
netic Signals, volume I of EEG Handbook, chapter 3, pages 31-83. Else-
vier Science Publishers Biomedical Division, 1987.

482



[6] H. Jasper. The ten twenty electrode system of the international federation.
Electroencephalographic Clinical Neurophysiology, 10:371-375, 1988.

[7] Zachary A. Keirn and Jorge I. Aunon. A new mode of communication
between man and his surroundings. IEEE Transactions on Biomedical
Engineering, 37(12): 1209-1214, December 1990.

[8] T. Kohonen. Self-Organization and Associative Memory. Springer-
Verlag, Berlin, 1984.

[9] R. H. Kraft, 0. R. Mitchell, M. L. Languis, and G. H. Wheatley. Hemi-
spheric asymmetry during six- to eight-year old performance of piagetian
conservation and reading tasks. Neuropsychologia, 22:637-643, 1984.

[10] Shiao-Lin Lin, Yi-Jean Tsai, and Cheng-Yuan Liou. Conscious mental
tasks and their EEG signals. Medical & Biological Engineering & Com-
puting, 31:421-425, 1993.

[11] G. Pfurtscheller, D. Flotzinger, and J. Kalcher. Brain-computer interface
- a new communication device for handicapped persons. Journal of Mi-
crocomputer Applications, 16(3):293-299, 1993.

[12] J.G. Proakis andD. G. Manolakis. DigitalSignalProcessing. MacMillan,
New York, 1992.

483



Design and Evaluation of Neural Classifiers

Application to Skin Lesion Classification

Mads Hintz-Madsen, Lars Kai Hansen and Jan Larsen
CONNECT, Electronics Institute, build. 349

Technical University of Denmark,
DK-2800 Lyngby, Denmark

emails: hintz, lkhansen, jlarsen ei.dtu.dk

Eric Olesen and Krzysztof T. Drzewiecki
Dept. of Reconstructive Surgery S,
The National Hospital of Denmark,

Rigshospitalet, Blegdamisvej 9,
DK-2100 Copenhagen, Denmark

Abstract

We address design and evaluation of neural classifiers for the problem
of skin lesion classification. By using Gauss Newton optimization for the
entropic cost function in conjunction with pruning by Optimal Brain
Damage and a new test error estimate, we show that this scheme is
capable of optimizing the architecture of neural classifiers. Furthermore,
error-reject tradeoff theory indicates, that the resulting neural classifiers
for the skin lesion classification problem are near-optimal.

1 INTRODUCTION

Melanoma is the most lethal of skin cancers. However, patients may be saved
from this life threatening cancer if their lesion is detected at an early stage.
Computer imaging may assist and improve the detection of such early lesions.
The "State of the art" in this field was recently reviewed in an editorial in
the journal "Computerized Medical Imaging and Graphics" [1]. Although
applied to the problem of skin lesion classification, the main objective of
this paper is to introduce and apply a new methodology for optimization of
neural classifiers. The methods applied may be considered as an extension of
the Designer Net time series processing tool [8, 9] to the realm of classifiers.

0-7803-2739-X/95 $400 © 1995 IEEE
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In particular we derive the Hessian for the so-called entropic cost function
and apply the Hessian for Gauss Newton second order optimization and for
estimation of weight saliency for use in Optimal Brain Damage pruning. A
key ingredient of the proposed method is a new test error estimate for the
entropic cost function [2]. The test error estimate enables us to select, the
optimal network within a nested family of pruned networks.

2 NEURAL CLASSIFIERS

The aim in classification is to model the probability of classification, P(ylx),
of a given input vector x where y is the class label. In the context of skin
lesion classification the input vector for the classifier is formed from nj feature
measurements on a given skin lesion. If provided with a training set, D,
consisting of p input-output pairs': (x,, y,), where x E 7TZ and y = ±1,
the likelihood of the neural classifier, F 0 (x), with parameters (weights) u is
given by [7],

P(Dju) I + F,(x ) F2 ( (X) 2(1)

Hence, for the well trained network, ½(1+F0 (x)) P(ylx). Training is based
on minimization of the negative log-likelihood:

p

E(u) -log P(D Ii) = c (x,, yo, u) (2)

with the error measure given by

6 (" " U +Yýlog 1 , x) I - ylog I I-F(, (3)
2 2 1-2 (2)

The cost function (2) is in turn recognized as the entropic cost function (see,
e.g., [6]). In order to eliminate overfitting, and for numerical convenience,
we often augment the cost function by a weight decay term corresponding to
minimizing instead the negative log-posterior,

C(Qu) = E(u) - log P(u). (4)

The log-prior, -log P(it), is conveniently chosen to be a quadratic form in
the weight parameters, e.g, representing a simple weight decay.

We discuss binary classification for convenience.
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2.1 Generalization

For a given network u the generalization or test error may be defined as,

Etest(Ut) = f DxdyP(x, y)c (x, y, u). (5)

Here, the "true" underlying distribution of examples, P(x, y), need not be a
singular measure, - we do allow noisy classifications, i.e., contradicting labels
for the same input, corresponding to IF,(x)[ < 1. Since the generalization
error involves an average over all possible patterns it is not observable, but
may be estimated by invoking additional statistical assumptions. The training
set error is given by

Etau E C(X., y, U) (6)
P=1

hence, the average entropic cost on the training set. In the limit, p -- cc,
Etrain(U) - Etest(U); asymptotic theory quantifies this limiting behavior.

While the above quantifies the generalization of a single classifier we are, in
fact, interested in the typical behavior of the test error. Therefore we compute
the training set averaged quantities:

(Etest) f DuPp(uL)Etest(ut) (7)

(Etrain) = J DuPp(u)Etrain(U). (8)

Here, Pp(u), is the distribution of optimal networks obtained by minimizing
the cost function based on randomly selected samples of size p from the
example distribution P(x, y). P.(u) could be thought of as the distribution
of network parameters in an ideal cross validation ensemble.

It is possible to show that P,(u) is asymptotically normal with P.(u)
N(u*, Y), where u* are the parameters that minimize the regularized test
error, Etest(U) - 1logP (1_) [2].

If we now choose the particular network architecture:

F•,,(x) = tanh (0,,(x)) , (9)
nH

-.(x) = Z Wjhj(x), (10)
j=0

hj(x) = tanh wj,kxk ,4(11)
k=0
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with nH hidden units, nI input units, and parameters u = (w, W), the co-
variance matrix has the particularly simple form,

Y (H + R)-' (12)

Hip, --j DxdyP(x, y) (1- F2 (x)) 0s..(x) O¢-.(x) (13)
j &Uj DO/p

where we further simplified the Hessian using the Levenberg-Marquart ap-
proximation [10]. R is the second derivative matrix of the regularization
term. The quantity Hip may be approximated by the Hessian of the entropic
cost function,

! (i - F2(D)(Xa)) 40u(D)(Xa)00(D)) (14)H ii, W .Hi, = P I= aui oui,14

where u(D) are the best weights found for the actual training set D.

With the asymptotic form of the cross validation ensemble distribution we
are in a position to compute the averaged quantities in (7) and (8), and find,

(Etest) = 60 + - e- (15)2 p
Neff

(Etrain) = 60 - Nf (16)2p

where the effective number of parameters is Neff = Tr[HE], and the asymp-
totic test error given by the average entropic cost of the teacher parameters
is,

co J DxdyP(x, y)e (x, y, u*) (17)

One may interpret co as a "noise level" for the classifier; if the classifier is
"crisp", i.e., if IF,.(x)I• 1 for almost all inputs, x, co • 0. On the other
hand, if the classifier is "fuzzy", i.e., IF,.(x)l • 0 for almost all inputs,
co • log 2.

In a practical situation one only has access to a single training set, and the
two averages may be combined to provide a test error estimate,

(Etest) = Etrain(u(D)) +-- (18)
p

where the average training error is estimated using the actual training error.
The estimator (18) may be used to select the optimal network, e.g., among a
family of pruned networks, hence, be used as a pruning stop criterion similarly
to the criterion previously developed for regression type problems in [8, 9].
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Figure 1: Skin lesion showing the characteristical large variations in textuire
and coloring associated with melanoma (original is in color).

2.2 Pruning

The architecture (11) may be subjected to pruning by Optirnal BraiM Damage

(OBD), developed by Le Cun and coworkers [10]. In OBD the parameters
of a network are ranked for pruning according to their importance for the
training error. If the importance is estimated using a second order expansion
of the training error around its minimum, we find the weight salien cy:

1 2si = 2 Hvz(D), (19)

where the Hessian is given as in (14).

3 EXPERIMENTAL

We evaluated the optimizing scheme and the classifier theory on the skin
lesion classification problem. This classification involves the classes: the ma-

lignant, the premalignant and the benign skin lesions. However we focused
on the classification problem of separating malignant lesions from benign.

An example of a malignant lesion is shown in figure 1 (original is in color).
Generic characteristics of melanoma are large variations in coloring, absence
or presence of certain texture features and irregular boundaries. The samples
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Figure 2: Left: Fully connected network for classification of skin lesions, the
21 inputs represent color and texture features. Right: Architecture of the
optimal pruned network. Note that only a few of the available inputs are

used by the net. The used features include first and second order texture
statistics.

used in the present study were all taken from a photographic library of skin
lesions, that were collected at the Dept. of Recontructive and Plastic Surgery
at the National Hospital of Denmark, and which all had been considered po-

tentially malignant. Hence, the sampling of the benign group is rather biased.

In previous studies [3, 4] it is unclear how the sampling of the classes has been

done, making comparisons difficult. The data set consisting of a total of 160
images was split into a training set of 120 images and a test set of the remain-
ing 40 images each containing an even split of the two classes. As input to the
network a group of 21 features incorporating color and texture statistics were
selected. Boundary features were not incorporated, since they were found not
to contribute significantly to the classification of the two classes. We believe

that this might be a result of the biased sampling, since most of our benign
samples, in fact, have irregular boundaries.

A fully connected network with 4 hidden units was chosen initially, see the
left panel of figure 2. In figure 3 we show the development of training and
test errors during training of the fully connected network; the weight decay

parameter was set to 0.8. Next we pruned the network iteratively accord-
ing to the OBD saliency ranking, pruning 5% of the remaining weights per

iteration. After each pruning session the remaining weights were retrained

for 30 epochs. For the resulting nested family of networks training errors,
test errors and estimated test errors were computed. We also computed the
sample standard deviation of the test errors. The development of these error

measures during pruning are shown in figure 4. The estimated test error was

used to stop the pruning and the architecture of the selected network is shown
in the right panel of figure 2. The pruning process is successful in identifying

a much smaller network with better test performance than the fully connected
network. Furthermore, the variance of the test error of the networks in the
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Figure 3: Development of the entropic test and training errors for the fully
connected network. Note that the test error shows significant overtraining.
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Figure 4: Development of training error, test error, and estimated test er-
ror. The vertical dotted line indicates the location of the optimal network
according to the estimated test error. The error bars on the test set errors
indicate sample standard deviations. Note the close correspondence between
the estimated and empirical test errors.

490



vicinity of the optimal network is significantly lower; hence we can be more
confident in the properties of these networks. Although the entropic test error
is indeed smaller for the pruned network than for the fully connected network,
it is of interest to see what the classification error of the two networks are.
Following Bayes decision theory we selected the class label according to the
sign of the network output when converting probabilities to classifications.
In this way we found, that the pruned network classified 74% of the lesions
correctly on the training set and 66% on the independent test set. The fully
connected network classified 98% correctly on the training set and 66% on
the test set, ie. when converted to classifications the performances of the two
networks are similar.

For comparison we have performed a k-Nearest Neighbor (k-N-N) analysis of
the data sets. Within k-N-N a pattern is classified according to a simple ma-
jority vote among its k nearest neighbors (using the simple Euclidean metric).
The training error may be computed from the training set by including the
actual pattern in the vote. A leave-one-out "validation" error on the training
set may be computed by excluding the actual pattern from the neighbor vote.
Finally, the test patterns may be classified by voting among the k nearest
neighbors found among the training patterns. Using the validation error we
found that k = 3 was optimal for this data set. The training error for the
3-N-N scheme was found to be 83%, while the test error was 63%, ie., the
network classifiers have slightly better performance than the k-N-N standard

algorithm.

Since the neural classifier is trained to produce classification probabilities
(and not only Bayes classifications), we can inspect the error-reject trade-
off induced by a reject threshold on the probability (rejecting decisions for
which IF,(x)l < T). The error-reject trade-off was recently discussed in [5].
Denoting the classification error rate, at reject rate R, by E(R), it was argued
that near-optimal binary classifiers should obey the relation (for low reject
rates),

E(R) = E(0) - (1/2 - E(0)) . R (20)

Since E(0) ýs 0.35 for the present system, we expect the slope of the trade-off
curve (the efficiency of the reject mechanism) to be -y = 1/2 - E(0) Z 0.15.
This is indeed confirmed by the actual error-reject trade-off curve presented
in figure 5.

4 CONCLUSION

We have developed a methodology for design and evaluation of neural classi-
fiers. The approach was applied to the problem of skin lesion classification.
The new test error estimator for classifiers was shown to be able to produce
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Figure 5: Tie error rate E(R) versus reject rate R computed on the test
set examples. The initial slope of the trade-off curve is approximately given
by 1/2 - E(O) in line with a recent theoretical analysis of probability driven
reject mechanisms in near-optimal binary classifiers.

valid estimates of the empirical test error and could be used to select, opti-
mal networks among a family of pruned networks. The optimal network for
the skin lesion classification problem based its classification on texture statis-
tics. Currently, the aim is to establish more empirical data for validation
of the neural classifier design approach and to compare our classification re-
sults with other recent neural network approaches for solving the skin lesion
classification problem.
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ABSTRACT

This paper explores the application of the Cerebeller Model Arithmetic Computer
(CMAC) artificial neural network to the analysis of multicomponent gas mixtures
using an array of eight nonselective, nonlinear and noisy Taguchi gas sensors.
Various network parameters that affect the performance of the CMAC are
discussed. Results of the analysis of three gas component mixtures are presented.

1.0 INTRODUCTION

In this paper, it is our interest to evaluate the performance of neural networks
for the calibration of chemical gas sensors. The specific problem under
investigation is to calibrate eight non-selective, nonlinear and noisy Tauguchi gas
sensors to analyze multicomponent gas mixtures using the CMAC (Cerebeller
Model Arithmetic Computer) artificial neural network. The goal is to accurately
predict the concentrations (in parts per million) of each of the gases in the mixture.

This study has two purposes: (1) to develop a practical approach based on
neural network computing for calibrating chemical sensors, and (2) to study the
effects of network parameters on this class of multidimensional function
approximation problem. The paper is organized as follows: First a statement of the
problem is described, following which design of a neural network is described.
Next, an analysis of different network configurations is presented. Finally, the
paper concludes with a discussion of results and findings.
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2.0 STATEMENT OF THE PROBLEM

The response of a chemical gas sensor varies with changes in gas
concentrations. Although these sensors are sensitive, their non-selective and
nonlinear response characteristics are important limitations to the analysis of
multicomponent gas mixtures. Due to the above limitations, mathematically, it is
very difficult to model the responses of a sensor. Also, the use of an array of
sensors and multicomponent gas mixtures makes the mathematical modeling so
complex that writing meaningful model equations becomes impossible.

Artificial neural networks are among the most promising nonlinear methods
for analysis of multidimensional nonlinear data. In the past work has been done on
calibrating array of chemical gas sensors using the Multilayer Perceptron artificial
neural network [3][5]. However Multilayer Perceptrons have the following
disadvantages :

1)They require many iterations to converge;

2)They are not suitable for real time training;

3)They require a large number of computations per iteration;

4)They have an error surface that can have relative minima;

5)They are not amenable to incremental training.

The CMAC has the advantages of the following properties

I)Local generalization;

2)Rapid algorithmic computation based on LMS training;

3)Incremental training.

3.0 NETWORK ARCHITECTURE

The CMAC network, first proposed by Albus [1] and later expanded by
Miller[4] provides a computationally efficient, memory efficient, localized basis
function neural network. While it is by no means necessary, it is common for
CMAC inputs, outputs, and weights all be integer values.

The diagram shown in Figure 1 from Miller [2] is a model of how a CMAC
operates. The training and testing vectors are taken from the input space. Each
input can be thought of as a point in the N dimensional input space. The input
space is theoretically infinite. In practice, since fixed precision integer values are
used, the input space is finite but very large. Fortunately, for virtually any problem
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we are concerned with only a small portion of the input space. Whether this small
portion is a single region, or multiple regions does not matter.

The CMAC. based on scaling, and quantization Maps input valies into a
conceptual space. In this conceptual space (denoted A in the figure) are the
receptive fields of the network. With CMAC, the receptive fields in the conceptual
space are of fixed size, and arranged along a lattice structure. In the CMAC
proposed by Albus, the receptive fields were organized along the main diagonals
of hypercubes in the conceptual space, and the receptive field shape was
rectangular. In the CMAC of Miller [4] the lattice structure and the receptive field
shape can be chosen.

A A'

C points E

o

input/State Output

space

Conceptual memory

Actual memory

Figure 1 : Block diagramn of the CMAC

A key point to note with CMAC is that while the entire input space may be
very large, in practice only a small subset of the space will actuially be visited.
Thus. the large conceptual memory can be supported by a relatively sinall number
of random ly-mapped actual weights. It is not uncomnmon, for instance to have a
conceptual space consisting of mnany billions of points mapped to a physical
memory consisting of only a few thousand weights. Obviously, for such a mapping
to work- it is necessary for at least one of the following to be true. Either a single
physical weight maps to mnany conceptual points. or only a small region of the
conceptual memory can be utilized. When physical weights are uised in more than
one region of the space, this is called a collision. Miller's CMAC code allows
collisions to be disabled.
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The mapping from the conceptual space to the physical memory maintains
key relationships between the actual weights and points in the conceptual memory.
Specifically, points in the conceptual space map to a fixed number of weights in
the actual memory. This number is the generalization parameter. Points in the
conceptual memory that are close together have a number of physical weights in
common. Points in the conceptual memory that are further apart have fewer
weights in common. Points in the conceptual memory that are far apart have no
weights in common (unless a collision has occurred).

4.0 NETWORK PARAMETERS:

All sensor data discussed in this paper was obtained from University of
Washington[3]. The data is the response of an array of eight sensors to
concentrations of three gases toluene, trichoroethylene, and acetone. There were
100 data points. These were divided into 75 training and 25 testing points. All the
data points were multiplied by a suitable factor to bring data into the integer range.
The software for CMAC was obtained from University of New Hampshire and
was customized for this problem.

Figures 2 to 5 show how the change of one of the network parameters, while
keeping the other parameters unchanged, affects the network error over the testing
set.

Network parameters that affect the output of network are discussed in the
sections that follow.

4.1 Input Scaling

Responses of sensors vary within the range of 0 to 1. Input scaling is
necessary in this case in order to bring the values to the integer range. All the
inputs were multiplied by a factor of 10,000. Inputs were further multiplied by a
small value, as shown in column 2 of Table 1, to fine tune the scaling. A change in
scaling factor from 1 to 2 increased the root mean square error (RMSE) on average
by about 10 ppm. The lowest RMSE for toluene was obtained with a scaling factor
of 0.8. However RMSE of other gases increased. The lowest RMSE for
trichoroethylene and acetone were obtained with scaling factors of 1.05 and 1.1
respectively. While changing input scaling factors all the other network parameters
were kept constant.
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Gener Input Output RMS error in ppm Beta Shape of
alizati Scaling Scaling Receptive
on factor factor field

Toluene TCE Acetone
256 1 1 18.96 16.99 14.51 1 linear
256 2 1 33.52 26.25 18.72 1 linear
256 0.8 1 16.80 23.85 19.12 1 linear
256 1.05 1 18.08 15.49 12.98 1 linear
256 1.1 1 21.25 17.26 12.98 1 linear

Table 1: The effect of input scaling with other parameters held constant.
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Figure 2: Comparison of error due to different input scaling factor

4.2 Output Scaling Factor

Values of gas concentrations varied from 6 to 400 ppm. These were
represented in the data set as values from 0.006 to 0.400. Since the CMAC
produces integer values, all the data set values were multiplied by a scaling factor
of 10,000 to bring them into the integer range. As expected changes in output
scaling factor did not affect RMSE of the testing set.

4.3 Generalization

The generalization parameter indicates the number of receptive fields excited
for any input. The generalization parameter in the CMAC software (UNHCMAC
Version 2.1) must be a power of 2. Careful selection of generalization parameter is
required. Lowest RMSE was achieved at generalization of 256. Increasing and
decreasing generalization affected RMSE of all the gases significantly. Increasing
the generalization parameter also increases computational time and memory usage.
The effect of the generalization parameter is summarized in Table 2.
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Gener Input Output RMS error in ppm Beta Shape of
alizati Scaling Scaling Receptive
on factor factor field

Toluene TCE Acetone
256 1 1 18.96 16.99 14.51 1 linear
128 1 1 39.74 28.66 24.48 1 linear
512 1 1 19.50 33.51 31.80 1 linear

Table 2: The effect of generalization with other parameters held constant
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Figure 3: Comparison of error due to different generalization factor

4.4 Shape of Receptive fields:

Four different kinds of arrangements of receptive fields were used [4]. The
arrangement denoted ALBUS is the arrangement used in the original CMAC
proposed by Albus [1]. The ALBUS option creates a hyperdiagonal arrangement
of on-off receptive fields. The RECTANGULAR option creates on-off receptive
fields in a more uniform arrangement. The LINEAR option creates linearly-
tapered receptive field functions in a uniform arrangement. SPLINE creates cubic-
spline approximation tapered receptive field sensitivity functions in a uniform
arrangement. LINEAR and SPLINE arrangements outperform RECTANGULAR
and ALBUS consistently. On the other hand, the computational time required for
RECTANGULAR and ALBUS arrangements was less than for LINEAR and
SPLINE. The generalization of 256, for the testing set, gave the lowest RMSE.
The effect of receptive field shape results are summarized in Table 3.
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Gener Input Output RMS error in ppm Beta Shape of
alizati Scaling Scaling Receptive
on factor factor field

Toluene TCE Acetone
256 1 1 18.96 16.99 14.51 1 linear
256 1 1 19.32 17.90 15.13 1 spline
256 1 1 21.70 23.52 18.61 1 rectangular
256 1 1 27.80 35.20 20.10 1 albus

Table 3: The effect of shape of receptive field with other parameters held constant.
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Figure 4: Comparison of error due to different arrangement of receptive fields

4.5 Learning Rate:

The weight adjustment equation for ALBUS CMAC is

AW = (desired output - network output) x 2 Beta

Thus, the higher the value of beta the lower is the weight change.
Convergence is faster with lower beta, but oscillations may be observed in network
outputs because of larger weight adjustments. For the given data set a beta of 1
gave the lowest RMSE. The results of various learning rates are summarized in
Table 4.
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Gener Input Output RMS error in ppm Beta Shape of
alizati Scaling Scaling Receptive
on factor factor field

Toluene TCE Acetone
256 1 1 18.96 16.99 14.51 1 linear
256 1 1 20.25 18.12 15.17 2 linear
256 1 1 22.17 20.14 17.13 4 linear

Table 4: The effect of learning rate with other parameters held constant.
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Figure 5: Comparison of error due to different learning rates

Figures 6 to 8 show the plots of desired the output and network output for
Toluene, Trichloroethlene and Acetone for each of the 25 testing points for the
best network obtained.
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Figure 6: Plot of desired and network output for Toluene
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Figure 7: Plot of desired and network output for Trichloroethlene
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Figure 8: Plot of desired and network output for Acetone

5.0 Conclusions:

The low RMSE errors in predictions of gas concentration proves the
suitability of the use of neural networks in gas sensor technology. The above
discussion of the network parameters of CMAC leads us to following conclusions.

1) CMAC is very sensitive to network parameters.

2) There is no clear method for choosing network parameters.

3) The shape of CMAC receptive field do have noticeable impact on network
performance. Computationally expensive receptive fields such as SPLINE and
LINEAR unfortunately improve performance of the network.
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4) Due to a low RMSE errors of 18.96 ppm on toluene, 16.99 ppm on
trichloroethylene and 14.51 ppm on acetone, as well as the ability to do on-line
and incremental learning, we feel that CMAC is a very promising artificial neural
network for calibration of chemical gas sensors.

5) These results can be applied to a wide range of multidimensional function
approximation problems involving noisy data and/or partially redundant sensors.
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ABSTRACT

One of the difficult problems in the gamma ray signals (GRS or GRB)
research area is the extraction, recognition, and classification of the information
contained in the signal data. In this paper, a methodology using fuzzy logic and
neural networks is presented for the recognition and classification of gamma ray
signals. The proposed recognition-classification approach of GRS is divided into
two basic steps. In the first step, a global classification scheme is used. The
global scheme is based on the processing of the local minima and maxima of
GRS, then a global recognition is obtained by using features from the shape of
the GRS global envelope. In the second step, a local classification scheme is
used. The local scheme is the extraction of the local features of GRS, and on the
correlation of those features to achieve a more specific GRS classification. Real
GRS signals are used to illustrate the results obtained by this method.

1. INTRODUCTION

Signal recognition is always an important topic for research. Several
methodologies (syntactical,stochastic) have been developed for this purpose",.
Gamma ray bursts are signals which may include important information about
the scientific history of the universe. The processing of Gamma Rays is an
interesting research area with the possibility for many significant contributions.
There are, however, some important open problems in the study of Gamma Ray
Signals (GRSs). These problems are generic recognition, classification of the
GRSs, and creation/extraction of information and rules regarding their structure.

Significant contributions have been made by using classical signal
processing methodologies, such Fourier transforms 3'4, for the classification of and
information extraction from a GRS. These efforts, however, do not provide a
generic solution to the problems mentioned above. These and other information
sources can be included in the proposed methodology.

Under these conditions, the use of neural networks as a new approach
to GRS problems can provide a significant contribution and a generic approach
to the problems. Although classical approaches such as statistical clustering
(which measures how well members of one set can be differentiated from all
others) and correlation functions (which measures how relatively close one
candidate resembles a representative of a given set) can aid in the sorting of

0-7803-2739-X/95 $4.00 © 1995 IEEE
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features into categories, a self-organizing neural network can form its own
categories based on all features given in a vector representing each GRS. A
strictness criterion is adjusted to vary the number of categories created, and as
new examples are added, a new candidate can be sorted using the existing
network weights, or the network can be allowed to reorganize itself to account
for the additional data. The extent of recategorizing can be employed as a
relative measure of the network's category robustness. A time relationship of
features may also be learned during this categorization.

When the sampling rate is relatively slow, some feature information that
is lost may have to be inferred from what remains. Neural networks, via a
distributed internal representation of the nonlinearities in a given relationship, can
assume missing information and also ignore noise, aliasing effects, and other
information that does not lead to a significant relationship. Outputs of a standard
or modified feedforward neural network, with a weight training method geared
to the nature of the relationship to be learned, can be trained by example to act
as diagnostic classifierss and generate the feature vector for the self-organizing
network directly. Further insights can be implemented to modify this feature
vector with an interpretive fuzzy logic routine", supervisory neural network or
expert system.

In particular, the methodology presented here includes three main steps.
The first step is the global recognition-classification of a GRS, using filtering,
detection of minima-maxima, and feature extraction/recognition. The second step
is the local recognition and classification of the GRS features. Based on these
two steps, it is possible to provide a generic hierarchical classification scheme
for the GRS. The third step is the training of neural network models in order to
learn the important features and rules that interrelate the GRSs.

2. THE RECOGNITION AND CLASSIFICATION METHODOLOGY
(RCM)

The RCM methodology attempts to classify automatically GR Signals by
combining neural networks and syntactic pattern recognition approaches. The
RCM methodology is divided into three main parts:

1) The Global Recognition-Classification (GRC) of a GRS,
2) The Local Recognition-Classification (LRC) of a GRS, and
3) The Categorization of using fuzzy logic and neural nets

2.1. The GRC Scheme
The GRC scheme consists of four main processing parts:
- The filtering process of the GRS values [v(t)],
- The detection process of the local minima-maxima of the GRS,
- The features extraction process, and
- The recognition and classification of the GRS features.

The Filtering Process

The filtering process is based on a Kalaman filter ' to remove the noise
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from the GRS signal, under the consideration that the noise follows a Gaussian
distribution.

The Detection of the Local Minima-Maxima (Envelops)
The detection of the local minima and maxima of the GRS's continuous

form is based on the determination of the straight line segments (SLS) of the
GRS form, and the selection of those values v(t) that belong to the starting points
(SP) and ending points (EP) of each straight line segment. A local minimum
value (lmin[v(t)]) is defined as a value v(t) with v(t)<v(t-1) and v(t)<v(t+l),
where v(t-1) and v(t+l) represent the previous and the next values of a GRS in
time. A local maxima value (lmax[v(t)]) is defined as a value v(t) with
v(t-1)<v(t) and v(t)>v(t+ 1).

Using the definitions above, the local minima and maxima of the GRS
signal can be determined.

Feature Extraction Process
A curve fitting process is applied to the local minima and maxima to

produce the curves that comprise the global shape of the GRS. In particular, the
curve fitting process is applied to all the local minima, and separately to all the
local maxima.
The lines produced by curve fitting will be processed in order to extract global
features of the GRS. These global features are curved and straight line segments
as well as their specific characteristics (starting point, orientation, curvature, size,
etc.).

Recognition and Classification of the GRS global Features
At this stage, the extracted GRS global features are compared and

interrelated for the better understanding of the main characteristics of the GRS
and its global classification.

2.2. The LRC Scheme
The LRC scheme is based on the extraction of the local features of the

GRS, especially useful when conventional function approximators cannot
properly capture the sharp transitions of complex time profiles. These local
features are several primitive shapes (PSs), such as:

which exist in the original GRS shape.
The extraction of the primitive shapes is based on a matching process

applied to the original GRS shape and the existing set of primitive shapes. Since
the PSs will be detected and extracted, an interrelation process starts which
compares and synthesizes these PSs to form either larger recognizable shapes,
or to provide additional information about the specific characteristics of the GRS,
to assist a more specific classification of the GRS. Note that each primitive shape
extracted from the GRS shape includes its own properties, such as size,
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orientation, location, period, and so forth.
During the training of the neural network model with the existing GRS

database, the global and local features of each GRS will be interrelated with all
the set of GRSs to attempt to generalize "rules", perhaps related to the process
that generates GRSs. The neural network model will also learn the set of the
PSs existing in the GRS database (unsupervised learning). Later on these PS
features will be used for the classification and processing of new GRSs.

3. SIMULATED RESULTS

The results of this simulation show that classification proceeds as expected;
in this case the network forms a decision surface that correctly classifies all 500
examples, but also classifies new examples not necessarily in the training set
with an error rate less than 1%. More complex problems may require more
complex neural network models that exhibit more complex behavior, but they
still use the same principles of operation. In particular, multi-layer networks with
backpropagation training rules are a solution to arbitrarily difficult classification
problems, i.e. more difficult than the above linear classification problem.

An additional simulation, employing the self-organizing network
described earlier for some representative GRSs, three categories emerged.
Examples of each GRS category are shown in Figures 1-3, with local and global
curve fitting shown as dotted lines. Extracted features included gains and
constants of exponentials, sinusoids, and parabolae of the associated shape
primitives. Table 1 shows the hierarchical classification for the previous three
GRSs.

3.1.Categorization via Fuzzy Logic and Neural Networks
A fuzzy spectral filter approach is employed to classify a candidate signal

given a representative reference signal for each category. A radial basis function
neural network can then be used to interpret the category memberships suggested
for each envelope. If no one category stands out, a fuzzy supervisor looking at
the network's outputs will identify it as a possible
new category and the signal can be established as its own reference.

For demonstration purposes two unclassified signals were compared to
three reference signals (Figures 4-6) via the memberships for the upper outer
envelope. The task at hand is to recognize
slight permutations of known signals which are contaminated or altered by
ambient noise. Unclassified Signals 1 and 2 represent two such possibilities.
Unclassified Signal 1, (Figure 7) is a slight permutation of Signal 2 and
Unclassified Signal 2 (Figure 8) is a doubled version of Signal 1. All signals are
presented with both inner and outer, upper and lower envelopes already
computed.

The following procedure was employed:
1. Select the signal waveform to be classified.
2. Compute inner and outer envelope waveforms.
3. Compute power spectral density of envelopes.
4. Define relevant spectra (those above background) for each reference
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signal.
5. Define Gaussians centered about selected spectra for each reference

signal.
6. Define relevant spectra for each candidate signal.
7. For the location of each candidate spectra on frequency axis, note the

total value of reference spectra.
8. Find the total value of candidate spectra for each reference and

normalize by number of reference spectra.
9. Result in values such as those of Table 2.

Table 2
Reference 1 Reference 2 Reference 3
Candidate 1 1.39 *1.7* 1.37
Candidate 2 *1.05* 0.04 0.7

The fuzzy spectral filter correctly classified the two signals as subsets of
one of the established references. Each of the candidate signals is correctly
identified by the high normalized value as belonging to the correct family. For
practical application a tolerance can be applied for the definition of a virtual tie
between two family comparisons for ambiguous signals. Such signals could be
singled out for special treatment and further analysis.

Step 3 of the analysis implies that one can separate relevant spectra from
background noise. This is done here by finding the mean of the power spectral
density, and adjusting it by a factor of 1.5 to lift it just above the baseline noise
(Figure 9). This can be used as a general tuning factor so long as it is applied
in a consistent fashion to any one group or family of signals to be compared.
A peak finder algorithm is then applied to locate the peaks of the power
spectrum. The location of each peak on the frequency axis is cataloged.

The fuzzy logic analysis applies a Gaussian centered about each of the
selected peaks on the frequency axis, each by definition having a maximum
magnitude of 1.0. The fuzzy logic approach alleviates both spectral location and
magnitude uncertainties for small data sets often encountered. It assumes that the
relative peak magnitude is of no concern so long as it is above the predefined
background noise level. Furthermore, small errors in peak location on the
frequency axis are taken into account by the gaussian mapping function.

As seen in Figure 10, the Gaussians for the reference signal (in this case,
2) are situated on the frequency axis with the candidate frequency peaks
superimposed. The candidate frequencies are mapped as point locations with
their total weight value for any one point being equal to the Gaussian magnitude
at that point. An overall goodness of fit is computed as the sum of the various
candidate locations, normalized by the number of potential Gaussians into which
they could fall. The normalization is achieved by dividing each total weight by
the number of reference frequency buckets available. This essentially normalizes
each reference signal to a total of one effective bucket. The resulting goodness
of fit weights are then tabulated as seen above in Table 2.

510



I /I\IT\

2 1

4 1 2 
/ 

1 lo

400'LE405NC0 SIGSLA 20 0

lL•'140•0 
511

4404,,- 2000 --•
,•.14 - 2 . 4 5 40 4 4 2 5 '

5111



CONCLUSIONS

This paper a methodology for the automatic classification of GRS using
neural networks presented. The method was based on the study of the global and
local characteristics of GRS and attempts a hierarchical classification of the GRS
signals by interrelating these features. It also offers a frame by using the neural
networks, to extract additional knowledge and interrelation rules from existing
GRS databases.
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Adaptive Preprocessing for
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Abstract-Neural networks based on Adaptive Resonance Theory (ART)
are capable of on-line learning. However, a limiting factor in on-line
processing has been the need to preprocess input patterns so that
features fall in the range [0.0, 1.0] 1, typically done with scale-factors
that depend on the input range of each feature. This paper demonstrates
a method by which the scaling of features becomes adaptive, eliminating
the need to batch-process patterns before presenting them to the ART
network. The resulting network implementation for on-line learning does
not call for any knowledge of the feature signals, ranges or otherwise. A
variety of implications of this scheme are analyzed.

INTRODUCTION

A classifier is capable of on-line learning if it can learn to classify patterns as
they are presented without storing the patterns for reference. It has been
suggested that ART networks are capable of such on-line learning [ 1,2]. Even
though this has not been proven theoretically, one finds that learning of the
whole set is usually accomplished in only one cycle (especially with the
learning rate parameter beta = 1.0). Therefore it is practical to use ART
networks for on-line learning tasks.

Traditionally, classification algorithms have been restricted to batch
mode learning. In other words, the whole training data set must be stored and
available for use by the algorithm. In such situations the scaling of input
features is trivial: the training set can be searched for the extreme values of
each feature and those values (possibly with added safety margins) can be
used as estimates of the true ranges of each feature.

1This is strictly true for Fuzzy-ART and Fuzzy-ARTMAP, but ART2 and
ART2-A does not technically require preprocessing of features other than ensuring
that all features are non-negative. In practice however, scaling of features is often
necessary.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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There are applications where batch operation is not desirable. For

example, if there are real-time constraints acting on the system, one does not

want to retrain the classifier from scratch each time a new pattern class is

identified. Rather, one wants an on-line classifier that can add knowledge

about the new pattern to its previous knowledge. As another example, the

classifier may be required to train on such a large number of patterns that

presenting the patterns more than once is too time-consuming or otherwise

resource intensive.

These are some situations in which on-line learning is required. Unless

the true range for each feature is already known, these situations present a

real problem for feature preprocessing. It is no longer possible to a priori

determine the extreme values of features in the training set because the whole

training set is never available at once. This is the problem that our adaptive

preprocessing solves by linking the scaling of features with the scaling of

weights. Adaptive preprocessing is also very convenient, even in batch-

processing situations, because it eliminates the need for analysis of input

variable ranges.

ALGORITHM

There are two key parts to the algorithm needed for implementing adaptive

preprocessing.

"• The observed range for each feature must be tracked. The maximum

(finaxi) and minimum (fmini) values of each feature i have to be stored

and updated every time they change.
"• When input pattern p contains a value for feature i (f'P ) which falls

outside of the previously observed range, the range must be updated and

the weights relating each cluster (wji, Vj) must be adjusted such that

previously seen patterns would be coded the same way if they were

presented again.

The adjustment is performed according to the equations below, which apply

specifically to Fuzzy-ARTMAP [3] and Fuzzy-ART [4]. First the new range

has to be determined according to:

finin'i = min(fmin i, f P) and fmax'i = max(finaxi, f P) (1)

where (') indicates the updated value, such as in fmini. If this new range is

different from the old, then the cluster weights are scaled:

W,'i = ( frnaxi-fmin +(frnini-frnin'i (2)w ji =i fmin'i) +ia' -(2)'i

and the complement weights:
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f fmaxi- finini + (finax 1iflnax) (3)ji fmaji x' - f +nin' fmax'i - fminin3

where for each feature i, the weights to every clusterj are adjusted.
Whether the range changed or not in (1), each feature in every pattern

must be normalized by mapping the feature range to [0.0, 1.0]:

fnormalize4P = fim - fm in'(fmax' - 'min'i(4

Equations (2 - 4) provide a linear mapping of feature and weight values, but
the general approach will also work with nonlinear mappings. As shown in
Figure 1, clusters that were not selected by the current input pattern merely
shrink through (2) and (3) as the observed range is expanded. Patterns which
previously selected those clusters will still do so, because the expanded range
also shrinks features by (4). Cluster growth occurs in the normal Fuzzy-ART
manner of weight update in response to training patterns. If a given input
feature value is outside the previously observed range, the cluster weight
representation for that feature will expand if it is selected by the current input
pattern. In summary, for the selected cluster, the weight representation can
shrink for some features and simultaneously expand for others.

U) f(A) ff(A)

O ----- ------- - I

fmin Faues cefmax f inax
Feature space

Figure 1. A graphical representation of one feature (f) and the mapping of values from
the original feature space to the [0.0, 1.0] weight space. At a given point in the
training cycle, values of f from fmin to fmax have been observed and two clusters
have been learned, A and B. Later in training, fmax is observed, which is larger than
fmax. According to (2), the weight values representing A and B change. f(A') shrinks
because the mapping function now has a shallower slope. This is true for any cluster,
other than the one which contains fmax, i.e. f(B').
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RESULTS

Figures 2 and 3 show results of tests to verify that adaptive preprocessing
does not interfere with the proper functioning of the network. We used

benchmark machine learning databases from the University of California,

Irvine repository at ftp://ftp.ics.uci.edu/pub/machine-learning-databases.
The first test is a two-class problem based on categorical data. The

Agaricus-Lepiota mushroom database contains over 8000 patterns of

features, observed from 23 species of mushrooms that belong to the genera

Agaricus and Lepiota. A pattern consists of 22 features (such as "stalk-shape"
or "odor"), each with 2 - 12 possible categorical values (such as "tapered" or
"pungent"). The classification task is to distinguish between edible or
poisonous mushrooms, which often look very similar.

The second test is a difficult six-class problem based on quantitative

data. The glass database contains 214 patterns of 9 different measurements
of chemical properties of glass. The classification task is to separate the data
into 6 classes based on these 9-dimensional patterns.

fl Adaptive [] On-line IM Full * Limited

100

90 'T

6 80-
a 70[

0
70-

60

50
10 40 80 320

Number of Training Patterns

Figure 2. A test to demonstrate that adaptive preprocessing does not cause degradation
of classification performance. Fuzzy ARTMAP was used to classify the Agaricus-
Lepiota mushroom database. Four processing conditions are shown: (Adaptive) uses
the adaptive preprocessing. (On-line) uses the adaptive preprocessing with the on-line
constraint of allowing only one cycle of learning for each set of training patterns.
(Full) uses batch-scaling of features based on fmini and fmaxi over the whole data
set. (Limited) uses batch-scaling of features based on fmini and fmaxi over the
training set only. The mean and standard deviation of each bar were estimated from 50
different random selections of training sets. "Percent Correct" is the average of the
evaluation set, which contains 8124 patterns minus the number of training patterns.
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Notice the minimal effect of on-line learning on the results in Figure 2,
i.e. presenting each pattern only once. The penalty for on-line learning using
adaptive preprocessing is never more than 3.5% and the best average
performance (for 320 training patterns), it is almost identical.

Ii Adaptive I" On-line * Full * Limited

70-

60-

50-

o 40-

C 30-

w 20-

10-

10 20 40 80

Number of Training Patterns
Figure 3. Same information and methods as in Figure 2, but for the glass database.
The evaluation set contains 214 patterns minus the number of training patterns.
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65 00 1.5 0
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Figure 4. The ranges and means of each feature from the glass database. Feature 1
represents the refractive index of sample; the other features represent different con-
centrations of oxides.

It is evident from the lower overall scores in Figure 3 that discriminating
between the 6 glass categories is much harder than classifying the
mushrooms. Still, adaptive preprocessing works just as well as fixed
preprocessing based on the training part of the set, and consistently better
than fixed preprocessing based on the whole set. Figure 4 shows that the
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natural range of the features is large for some features (such as 2, 5, and 7)

and very small for others (1 in particular), and the distribution within that

range is very skewed for some (such as features 6, 8, and 9).

TYPES OF LEARNING IN FUZZY-ARTMAP

When adding the adaptive preprocessing to Fuzzy-ARTMAP, the result is a

network with four distinct types of learning which can be individually

controlled (in high to low level order):

"* Supervised learning, or learning in the map-field. This type of learning

determines the connections between clusters and output classes. It is

performed in training mode, i.e. when the current input pattern has an

associated output class. Several clusters can map to the same output class,

implementing decision surfaces of arbitrary complexity.
"* Creation of new cluster nodes. When no previously established clusters

meet the "vigilance" criterion new clusters are formed. This can be

disallowed, forcing the choice of a previously created cluster. Conversely,

cluster creation can be allowed during testing, although the mapping to an

output class has to be deferred until relevant training data is presented.
"* Modification of cluster weights. This is the type of learning Fuzzy-

ARTMAP has in common with most other neural networks. Learning of

this type is usually allowed when in training mode. In certain situations,

the network can also be allowed to update weights in testing mode.
"* Allow updating of input feature ranges and the associated adjustment of

cluster weights. Ordinarily, this type of learning applies both in training

and testing modes (but see section below on dealing with noisy data).

The choice of learning types allowed during training and testing modes is

application dependent and the number of options makes Fuzzy-ARTMAP

with adaptive preprocessing applicable in a variety of situations.

ADAPTIVE PREPROCESSING

Nonlinear Mappings

Mapping the range of the input feature to the usable [0, 1] range in order to

maximize the effectiveness of the network also includes the possibility of

using a nonlinear mapping rather than linear transformations. Indeed, any

monotonic (and therefore one-to-one) function can be used for this purpose.

Some of the functions which might be used instead of lines are sigmoids
(logistic or tanh), logarithmic, exponential, and power functions. At the

moment the choice of scaling function has to be determined manually, with

some knowledge of the features used. A different function may be used for
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each feature.
An intriguing (but computationally expensive) option is to track the

mean and variance of each input feature instead of the min and max. Then a
sigmoid is the natural choice for a mapping function. This would seem an
ideal mapping for features that are normally distributed.

Applicable Network Types

This adaptive preprocessing scheme is designed for analog ART networks
that use complement coding, but it will work for any analog ART network,
such as ART2, ART2-A, and Fuzzy-ART. The procedure should work
equally well for any network where the weights can be considered templates
of input features. Another consideration is whether a situation calls for
feature normalization, which is often used in practice even if not theoretically
required for the given paradigm.

A mean-and-variance tracking version of the procedure could be applied
to multi-layer perceptrons. The input features would be normalized to zero
mean and unit variance. Changes in variance of a given feature affect the
importance of weights propagating from that feature. These weights can be
adjusted according to the reciprocal of the variance change. Changes in the
mean have higher order effects on the required weight adjustments. These
effects could possibly be ignored, or accounted for with bias adjustments.

A deeper issue is the amount of training required for multilayer
perceptrons. As mentioned in the introduction, on-line learning is a major
impetus for the described procedure. It would seem that multilayer
perceptrons are particularly ill suited for, on-line learning, due to their
extensive training requirements. Until on-line learning abilities are developed
for multilayer perceptrons, we do not see a need to adapt our procedure to
such networks.

Noise Tolerance

The adaptive preprocessing method introduced here can be sensitive to
outliers, just as traditional fixed scaling methods. One solution is to detect
and discard extreme outliers that would otherwise adversely compress the
useful range in weight space. If outliers cannot be detected, there are still
several methods available to avoid problems.

The simplest possibility is to predetermine absolute bounds for each
feature and clip any features that fall outside these bounds. Another
possibility is to keep a running mean and variance, as discussed above, and to
clip any values that fall outside a predetermined number of standard
deviations.
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A more elegant method is the use of a compressive non-linearity, such as
a sigmoid function. In that case, no feature value is large enough to adversely
compress the useful range. It is also possible to use a learning rate parameter
for the feature and weight adjustments, such that the range will not
immediately expand to encompass the noisy data. Several such data points
would be necessary to establish a new bound. In a real application, the
simultaneous use of some of these methods would be prudent.

Note that by (1), the observed range for each feature can only grow. A
continuous baseline shift in a given feature will cause the range to expand
continuously, mapping the useful range of that feature into an ever decreasing
portion of the [0.0, 1.0] range. This can eventually lead to resolution
problems, but with the floating precision representation used in most
computers, an extensive baseline shift is required. This method has the
distinct advantage of breaking down gracefully as the resolution decreases,
unlike methods based on clipping.

CONCLUSION

The use of adaptive preprocessing is necessary for true on-line learning with
Fuzzy-ARTMAP and it can greatly simplify the network's use in a variety of
other applications. The procedure is a computationally simple addition that
does not sacrifice performance and yet increases system robustness tremend-
ously. Additionally, if classification rules are to be extracted from the
network, then the cluster weights can be given direct meaning in terms of
non-normalized feature values. Finally, there is potential for adapting the
method to other on-line learning paradigms.
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Abstract

To improve network management in today's increasingly complex
communication networks, we propose an intelligent monitoring hier-
archy. The hierarchy is comprised of Hidden Markov Models (HMMs)
and neural networks. As demonstrated on real network data, this hi-
erarchy can detect abnormal behavior at high levels using only readily
available low-level fault models. This allows the node to provide the
network manager a complete picture of the nodes health.

1 Introduction

As communication networks continue to increase in size and complexity to

support new applications and the large number of new users, understand-
ing and managing network behavior becomes increasingly difficult. Many of

the new applications (such as video) will require communication networks
to maintain a higher standard of network availability and reliability, thereby
making effective network management crucial. Thus, at a time when net-
work management is critical, the complexities of the network make it more

difficult than ever.
Network management is a broad term that has been defined according to

the Open Systems Interconnection (OSI) systems management specification
developed by the International Organization for Standardization (ISO). It

0-7803-2739-X/95 $4.00 © 1995 IEEE
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includes the following five functional areas: fault management, performance

management, accounting management, configuration and name manage-

inent, and security management. These functional areas are covered by a

Network Manager (NM) which may be an automated system, a human, or
a combination of both. An NM may be responsible for managing an entire

network or just part of the network, depending on the size of the network.

The NM does it's job by processing information received from the network

nodes (servers, routers, bridges, terminals, etc.). How well the NM per-

forms it's job is highly dependent on the quality and completeness of the

information received from the nodes.
The collection and processing of data at each node is referred to as

network monitoring. There is a tremendous amount of data collected at

each node that must be processed to extract pertinent information to be

sent to the NM. The definition of pertinent varies, but in general the NM
expects each node to notify it of any abnormal or anomalous behavior.

To accomplish this, the monitoring function at the node must be able to

process the data and detect the anomalous behavior. In this paper, we focus

on anomaly detection for fault and performance management although the

methods developed can be generalized to the other functional areas as well.
The task of anomaly detection is extremely difficult due to the fact

that network behavior is dynamic and it depends on many factors such as

network load, traffic characteristics, and network configuration. In addition,

even if the network was static, since there are no large-scale system models

to model the complex behavior at a nodel, anomaly detection must be based

on anomaly or fault models.
The types of existing fault models used to detect anomalies can be cat-

egorized as either low-level or high-level models. Low-level models are sim-

plistic one-dimensional data thresholds. These models are complete (i.e.

a data point is either above or below a particular threshold). When the

threshold is exceeded, the NM is notified with a message from the node

called an alarm. The NM must understand the temporal relationship be-

tween alarms so the problem can be identified at the highest level and the

appropriate action(s) can be taken. If the symptoms are identified as the

problems and the higher-level issue is not addressed, the actions taken may

'Note that techniques such as queaing models and finite-state machines have been
used to model various pieces of a node, but integrating these pieces or designing a large-
scale model to accurately and completely model a node's behavior is an open problem.
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actually degrade the network further. Currently, due to the way data is

collected and reported [7], temporal information is lost, making correlation

extremely difficult.

High-level models attempt to address these issues by correlating the

low-level information at the node. Instead of notifying the NM every time
a threshold is exceeded, these models correlate the information locally and

notify the NM only when a known anomaly is detected. These models are
comprised of known fault information such as fault signatures. For example,
a simple high-level model may detect an anomaly when both variable 1 has

exceeded a threshold for at least 5 minutes and variable 2 exceeds a thresh-
old. These models are incomplete since it is not feasible to identify every
abnormal situation. Previous research approaches focusing on high-level

models include expert systems [1], Finite State Machines [4], and advanced

database techniques [6]. These approaches consider temporal relationships,
but require fault specifications to set up the required constructs. They do

not address the fact that anomaly information is not available in most cases.
In addition, since the definition of anomalous behavior changes as the net-

work evolves, the accuracy of high-level models decreases as the network
evolves.

The key open problem for anomaly detection is how to detect unknown

anomalies or faults. The major contribution of this work is a structure and

method for detecting high-level anomalies using only low-level models which
are readily available and complete. High-level fault models are not required.
To accomplish this, we propose an intelligent monitoring hierarchy at each

node. The hierarchy consists of Hidden Markov Models (HMMs) and neural
networks. The neural networks are used to learn the normal behavior of the
network, and the HMMs provide temporal context.

Our results demonstrate on real network data that this type of hierarchy

can detect high-level anomalous situations using only low-level fault mod-

els. The state (normal or abnormal) probabilities are determined at each
level in the hierarchy, thereby providing a full picture of a node's health
to the network manager. The network manager can then more accurately
determine if the alarm is a problem itself (no more general problems exist)
or a symptom of a bigger problem.
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2 Intelligent Monitoring Hierarchy

We have taken advantage of the breakdown of network architectures into a

set of hierarchical layers to construct a network monitoring hierarchy. The

three-level hierarchy detects anomalies in a Management Information Base

(MIB) variable, within a protocol layer, and spanning both protocol layers
(defined as network anomalies in this paper) (Fig. 1(a)). This allows both
low- and high-level information to be passed on to the network manager.

The detection is accomplished by defining two states (normal and abnor-
mal), corresponding to the health of the element in the hierarchy (i.e. MIB
variable, protocol layer, or network). At the lowest level, the state of each
MIB variable is estimated from the data. At the higher levels, the state of
each element is estimated using the state probabilities from the previous or
lower level as input. Elements identified as being in the abnormal state are

considered to be anomalies.

At each level, the state estimation involves an HMM. We have assumed
that the underlying process is Markov in nature, but we cannot observe
the states (i.e. they are hidden), therefore an HMM is chosen. This model
provides the ability to consider temporal context which is very important
in the network monitoring application.

2.1 Lowest Level of the Hierarchy

At the lowest level (MIB variable), each MIB variable is the input into a
hybrid neural network-HMM as proposed by Smyth[5](Fig. 1(b)). Although
the structure of the neural network-HMM is the same, Smyth estimated a
high-level fault model with it, whereas we are estimating a low-level fault
model. A feedforward network is trained using the standard backpropaga-
tion algorithm to provide the a posteriori state probabilities p(siIO(t)) [3],
where si is the state, 0(t) is the time-series data of the MIB variables at
time t, and m is the number of states. Given these probabilities, the HMM
then provides temporal context by estimating the state probabilities as

- Z7-1 (t)p(si 10(t)) - M

where

O -iM = p(O(t)Is) E aij aj(t - 1).
j=1
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We assume aij, the state transition probabilities to be known ahead of time.
By Bayes' rule

-p(si 0o(t))p(o(t))
P O( O ~ t ls i ) = p (si ) '

where p(si) are the assumed prior state probabilities. Since the probability

of the measured data p(O(t)) is independent of the state, this can be omitted
from the calculation without loss of generality. The outputs of the HMMs
(state probabilities) are used to estimate the state of the MIB variable and
also passed up to the second level. The state is estimated by selecting the
state with the highest posterior state probability. If the state is determined
to be abnormal, notification will be sent to the NM (along with the states

of the next two levels).

2.2 Higher Levels of the Hierarchy

At each of the next two levels (Fig. l(b)), the outputs from the previous
level are combined linearly to estimate the higher-level state probabilities

p(Sii4(t)), where Si is defined as a higher-level state probability and -D(t)
is 0(t) and the outputs from previous level HMM(s).

p(S I'(t)) = p(sll, si 2I0(t)) + 0.5[p(sil, s 22 0•(t)) + p(s2 1 , S121'P(t))]

p(S 2 1I(t)) = p(s2 1 , s2 21'(t)) + 0.5 [p(sil, S2214(t)) + p(s21, s12 0¢(0))]

where sij represents the ith state of the jth output from the previous level.
In the cases where one of the inputs is normal and the other is abnormal, the

probability mass is split evenly. The variables we monitored were assumed
to be independent (a reasonable assumption based on the data), so the
joint probabilities can be easily calculated. These state probabilities are

then used as input into the HMM as described in Section 2.1. Once again
the state is estimated and the state estimate is included in the information

sent to the network manager if notification is warranted (i.e. an abnormal
state has been detected within the hierarchy).

3 TCP/IP Network Monitoring

The proposed hierarchy is applied to the TCP and IP layers of a single
node on the Internet. Time-series data is collected by polling the MIB of
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the node. The MIB was chosen as a data source due to the clear sepa-

ration of data by protocol layer and the availability. Each Internet node
serving as a Simple Network Management Protocol (SNMP) agent collects

and maintains a standard set of information in its MIB[2]. The Manage-
ment Information Tree (MIT) is analogous to the MIB in OSI networks[7],

making this approach viable on OSI networks as well.

4 Experimental Results

4.1 Data

The concepts of the intelligent monitoring hierarchy detailed in Section 2
were tested using data collected from a single node on the Internet. The
MIB of the node was polled every 15 seconds to collect data. The data
was gathered over a period of fourteen days. During this time, we cre-

ated a network congestion situation by flooding the network with broadcast
packets.

A total of four MIB variables were monitored. In the IP layer, the num-
ber of input datagrams received from interfaces (ipInReceives) and the num-

ber of IP datagrams supplied to IP by local users for transmission (ipOutRe-
quests) were monitored. In the TCP layer, the number of segments received
(tcpInSegs) and the number of bytes retransmitted (tcpRetransBytes) were

monitored.

4.2 Design of Monitoring Systems

The neural networks used had one input, a hidden layer consisting of three
nodes and two outputs. They were trained by backpropagation with 6000
training samples. Artificially generated abnormal data (approx. 10%) was

added to the training set to compensate for the lack of abnormal samples in
the network data (approx. 0.5%). The abnormal samples were drawn from

a uniform distribution.
The HMM transition probabilities were chosen based on discussions with

network managers and the collected data. HMMs at the same level in the

hierarchy had the same transition matrices. We assumed that the prior

probabilities of both states were equally likely.
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4.3 Results

Figure 2(a)-(g) illustrates the performance of the intelligent monitoring hier-
archy on the network congestion situation we created. Each figure indicates
the posterior probability of being in an abnormal state. We use a simple

Maximum A Posteriori (MAP) scheme to estimate the state, so any time

the p(abnormal) is greater than 0.5, the state is deemed abnormal. As de-

scribed in Section 2, the posterior state probabilities calculated at level n

are used as inputs into the level n+1 system.
We assume that the network manager would be notified (i.e. an alarm

would be generated) any time part of the hierarchy reaches an abnormal

state. The distinction between this hierarchy and conventional systems is
that when an abnormal state is reached, the network manager is notified

of the specific anomaly along with the state of the rest of the hierarchy.
Thus the network manager has both the low- and high-level information

necessary to identify the problem.

We observed two periods of time where the network was so severely
congested that traffic was stopped. Both of these times were detected at

all layers of the hierarchy, correctly indicating a network problem. Starting
from the lowest level, Figs. 2(d)-(g) show the alarms generated after each
MIB variable is temporally correlated through the hybrid neural network-
HMM. When you go to the next level, the amount of time in the abnormal
state decreases as expected. There are only four intervals in which the IP

layer is identified as abnormal (Fig. 2(b)) and only one where the TCP
layer is identified as abnormal (Fig. 2(c)). At the highest level of the the

hierarchy, there are two intervals where the entire network is in an abnormal

state (Fig. 2(a)) corresponding to the the situation that we observed.

These results demonstrate that the system is capable of generating tem-
porally correlated alarms at each level, thus providing the network manager

with a full picture of the node's health. The power of this system can be
illustrated by examining the second abnormal state interval for the network
(Fig. 2(a)). During this interval, the IP layer is also in an abnormal state

(Fig. 2(b)), but the TCP layer is not (Fig. 2(c)) although the probability

of TCP being in an abnormal state is non-zero indicating that things may
not be totally normal in that layer. Given the structure of the protocol, we
know that when IP is abnormal, problems may "snowball" up to the TCP

layer. Therefore, in this case, the monitoring hierarchy has detected the
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network problem before the TCP layer has totally become abnormal. We

have thus demonstrated the system's ability to notify the network manager

of a "snowballing" problem.

5 Conclusion

The intelligent network monitoring hierarchy proposed in this paper has

demonstrated the ability to detect unknown anomalies at various levels

using only readily available low-level fault models. High-level models which

are incomplete and much less accurate are not needed. The information

generated at each level can be compiled to create a complete picture of the

health of a node. This information can be of great assistance to the network

manager by identifying the most general problem so the appropriate actions

can be taken.

Future work will address incorporating more of the MIB variables into

the monitoring system. As these variables are not all independent, this

will involve investigation of other methods of combining the outputs of the

H MM.
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Abstract

This paper describes an adaptive encoder/decoder for
efficient quantization of nonstationary signals. The sys-
tem uses a robust backward adaptive encoding method
such that the adaptation of the encoder and decoder
is only determined by the transmitted codeword and
does not require any additional side information. By
incorporating a forgetting parameter, the quantizer is
also robust to transmission errors and encoder/decoder
mismatches. It is envisioned that practical applications
of this algorithm can be used in the design of adaptive
codecs (A/D and D/A converters) or as an efficient
source coding algorithm for transmission of digitized
speech.

1 INTRODUCTION

A typical waveform coder transmits information across a communica-
tion channel such that the resulting reconstruction of the signal at the
decoder, say u', is as close as possible to the original source u. In
this communication context, a quantizer Q(.) can be viewed as an en-
coder/decoder pair connected to a digital channel. The encoder S con-
verts a sampled version u,, of the source into a digital form I,, = E(Un),
sends it over the channel C to the decoder D which reconstructs the sig-
nal u' = D(142 ) according to the codeword I,, = C(In) received. Note
that C(.) corresponds to the deterministic identity mapping for a noise-
less channel such that I,• I=,, and to a probabilistic mapping for a
noisy channel. Then, as shown in Fig. 1, u,= Q(un) = oCoD(u).

0-7803-2739-X/95 $4.00 © 1995 IEEE
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Throughout the paper, signals or parameters of the decoder which are
similar to those of the encoder are denoted with primes.

A quantizer is optimal with respect to the probability density function
(p.d.f) p(u) of the source to be encoded if it minimizes a r-th power
distortion measure d(u,u') = Dr = ' 1u - u' I" p(x) dx with 0 <
7" < oc. In quantization, the most commonly used powers are r = 1
(mean absolute error) (see e.g. [1]), r = 2 (mean squared error) (see e.g.
[2. 3. 4]) and r = oc (mean maximum absolute error). In case p(x) is not
known. the most widely used design algorithm for scalar quantizers is the
(standard) Lloyd I algorithm, which can be extended for minimizing r-th
power law distortion (generalized Lloyd I) [5]. However, because they
are batch algorithms, the design of the quantizer can only begin after
the entire training set is available. By consequence, these algorithms are
not able to accommodate on-line changes in the input p.d.f.

In many applications, communication systems may have to carry sig-
nals of changing statistics, e.g. speech inputs with different variances.
The most efficient way to handle nonstationary inputs is to continuously
adapt the encoder/decoder pair in such a way as to match observed local
statistics of the input sequence. For performing adaptive quantization, a
number of researchers have developed unsupervised competitive learning
algorithms (for references, see [6]), of which the Kohonen algorithm is
one of the most well-known. Because the weight updates are a function
of the input u, this scheme is referred to as forward adaptation and suf-
fers the serious drawback that an excessive amount of side information
is required to transmit the updates to the decoder [5].

On the contrary, backward adaptation is primarily of interest for design-
ing adaptive quantizers because it does not require transmitting addi-
tional bits. As depicted in Fig. 1, the digital codewords IP and I are now
used instead of the input u to adjust the quantizing parameters. Comn-
monly used backward adaptive algorithms are gain or step size adaptive
and expand or contract the dynamic range of a time invariant quantizer
according to an estimate of the signal variance [7]. These algorithms
assume symmetrical zero-mean p.d.f.s of known shape and therefore are
not ideal devices for quantizing non stationary inputs.

A new backward adaptive algorithm has been introduced for buiding
scalar quantizers "on-line" and without assuming any particular p.d.f's
shape [8]. The learning rule, called generalized Boundary Adaptation
Rule (BAR,). minimizes r-th power law distortion D, in the case of
high resolution quantization. Unfortunately, in a communication situa-
tion, such a backward adaptive process is sensitive to transmission errors.
If I,, $4 I, is received at time n, then the decoder will not adapt appro-
priately and the resulting mismatch between encoder and decoder will
remain in the system unless an alignment or recalibration is performed.
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A(,') A(D)

Un Inn' U'

-~ SC DI

Figure 1: Block diagram of a backward adaptive quantizer. Encoder
(E), Channel (C), Decoder (D), Encoder and Decoder Adaptation (A(S) and
A(D)). Prime notations stand for the decoder's parameters. The decoder
presents a symmetrical structure in order to track the encoder adaptive pa-
rameters.

In this article, we introduce a modified Boundary Adaptation Rule which
is robust to channel errors and initial encoder/decoder mismatches.

2 QUANTIZER DESCRIPTION AND ANALYSIS

A regular N-point scalar quantizer Q(.) maps the scalar-valued input u,
into one of N reconstruction levels. The quantizing system of interest
is illustrated in Fig. 1. The encoder is specified by an ordered set of
boundary points x0 < ... < xi-1 < xi < .. < XN delimiting N disjoint
quantization intervals R 1 ," • ", Ri," • •, RN, with Ri = [xi-1, xi). Its out-
put I,, is usually defined by the N-bit binary vector (IlR1, -. , IlRN,) in
which IlRi (un) = 1 if u, E Ri and = 0 otherwise. In a communication
situation however it is usually mapped into a more compact R-bit code-
word representation with R > log21N for transmission. The decoder has a
structure similar to the encoder but with prime notations standing as its
parameters. The decoding operation corresponds to u' E"i=lN R In
high resolution quantizers, the number of quantization intervals N is very
large so that the interval lengths are very small and the reconstruction
levels y' can be approximated by the midpoints of their corresponding
quantization intervals: y' = (x ý_, - x')/2.

The boundary points delimiting the quantization intervals are therefore
the only parameters to adapt. At the encoder, the backward adaptation
of xi can be written as:

Axi(n) = xi(n + 1) - xi(n) qf(In) (1)

where q is the learning rate, a positive scalar. In its simplest form, the
generalized unsupervised learning rule called BAR, (generalized Bound-
ary Adaptation Rule) reduces to Eq. (1) with:

f(1 1 ) = lRi+ - 6
8
rllRi (2)
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where 6i = xi-. - xi is the length of the interval Ri. Assuming that for
input u,, 11R = 1, then only the interval Ri is reduced in size by increas-
ing xi-I and decreasing xi. A faster rule, called FBAR,, is obtained by
updating all boundary points each time an input is presented:

N Tf(1.)= k - (3)
k=z41I k=1

FBAR, and BAR, minimize r-th power law distortion [8]. At conver-
gence, all the N quantization intervals Ri will have the same distortion
D,(i) = D,/N. This property guarantees an optimal high resolution
quantization [91.

To track the encoder parameters, the same learning equations are used
at the encoder but, again with prime notations.

3 A ROBUST BOUNDARY ADAPTATION RULE

In the case of a noisy channel, I,, may be different to I,, resulting in a
mistracking of the encoder. Indeed, with Eq. (1), the mismatch from
inappropriate adaptations will remain within the system. To help the
system readjust, a leakage or "forgetting" factor 3 needs to be introduced
in the learning rule. Eq. (1) therefore becomes:

Axi (n) = qif(I.) - O3xi(n). (4)

To assess the effect of /3 on the robustness of the system, lets d, (.)
denote the difference at time n between two similar parameters, one at
the encoder and the other at the decoder. d,(xi) = xi(n)- x'(n) can be
calculated recursively and expressed as:

d.(xi) = (1 - 03)'do(xi) + 2q Z(1 - /3)(n-k-1)dk(f(I))
k=O

Clearly, in the absence of transmission errors, d, (xi) = (1- 3)do (xi) -
0 when /3 < 1 and n -- oo and the initial encoder/decoder difference
do(xi) decays with time. Similarly, the offset dk(f(I)) from each trans-
mission error Ik $ k, decays exponentially with time.

Eq. (4) is equivalent to Eq. (1) at convergence only if 13 <<«q. However
a high value of 13 is necessary to improve performance in the presence
of transmission errors. Furthermore, larger values of 13 in Eq. (4) also
modify the basic performance criterion which will be no longer an r-th
power law distortion D,.

To maintain the ability of fully recovering from transmission errors while
minimizing D,, we propose the following modified learning rule
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Axi(n) = 7f(I,-) - 3(x(n) - x*) (5)

in which xi now decays to some (fixed a-priori) nominal value xi*. Note
that Eq. (5) is identical to (4) when xi* = 0 and to (1) when f = 0.
More interesting is the fact that, at convergence, Eq. (5) and (1) are
equivalent if xi* = E[xi] as found by (5) at convergence, no matter the
value of 3.

The nominal boundary point values should be chosen equivalent for the
decoder and for the encoder and be comparable to those given by a
quantizer optimized for the long term p.d.f. at hand (e.g. a it-law
quantizer for speech coding or a quantizer optimized for a gaussian p.d.f
in case of differential waveform coding assuming gaussian residuals). For
high values of 3, forgetting will be predominant over adaptation and
the boundary points will eventually fluctuate around the nominal values
specified by the user.

4 APPLICATION TO WAVEFORM CODING

We have previously shown that, for large N, FBARr, Eq. (1) and (3),
outperforms the generalized Lloyd I algorithm in minimizing r-th power
law distortion Dr with r = 1 and 2, for a gaussian and an exponential
p.d.f. [8]. Here, we show the performance of the modified algorithm
(Eq. (5)) in quantizing speech signals with noisy channels. FBAR, is
preferred above BAR, in waveform coding applications because conver-
gence is O(N) time faster as noted in [8], and for this reason Eq. (3) will
be used in conjunction with Eq. (5) in numerical simulations.

The performance of a quantizer is often assessed in terms of signal-to-
noise ratio (SNR) specified in units of decibels (dB):

E[u2]
SNR = 10 log10

Another measure of interest reflecting temporal variations of SNR in
waveform coding is the segmental signal-to-noise ratio (SEGSNR) which
is simply a time-average of the ratio computed for each segment of the
input sequence. Typically, appropriate segment length in speech coding
is in the order of 16ms [7]. Although the maximization of both SNR and
SEGSNR implies the minimization of the mean square error D 2 , FBAR,
with r = 1 has been employed in our adaptive quantizer for simplicity.
To avoid dependency on a particular choice of fixed overload points, x0
and XN were taken after each time step as follows: x0 = Xl - 62 and
XN = XN-1 + 

6
N-1.

Ideally, in presence of a locally stationary input like a speech signal, an
adaptive quantizer would adapt quickly to abrupt changes in the input
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p.d.f. and stop adapting in the presence of a stationary segment. Fig.
2 shows the effect of the value of the learning rate 7j on the speed of
adaptation of a typical speech signal originated from TIMIT database.

A value of n = 0.49 causes intantaneous adaptation, i.e. sudden changes
following the local waveform peaks. On the contrary, a value of r/ =
0.049 causes syllabic adaption, i.e. slower changes that do not follow the
local peaks, but only their envelope. The value of p mediates therefore
the tradeoff between instantaneous and syllabic adaptation. We have
found that a value of q = 0.2 is acceptable such that FBAR• tracks
the changing statistics of speech with appropriate speed and with high
values of SEGSNR. Table 1 compares the performance of FBAR, (rq =
0.2. 3 = 0.0) with those of fixed quantizers such as uniform and p-law.
The results indicate that FBARI gives at least a 4 dB gain in SNR over
p-law. In addition, unlike non-adaptive quantizers. FBAR1 maintains
a fairly constant and non-negative SNR-versus-time characteristic for
all input speech segments. The resulting SEGSNR value attained is
therefore superior to that of a p-law or uniform quantizer, especially
at low rates: 12.71 dB ±0.044 instead of 5.11 and -5.46 dB for 3 bits,
respectively.

Mismatches and long term drifts in hardware characteristics are a com-
mo10 drawback in analog-to digital converters. The self-correcting capa-
bility of our adaptive quantizer from initial encoder/decoder mismatches
is illustrated in Table 2 for an initial mismatch 7n0 = 1.5 and for dif-
ferent values of the forgettini factor 3. The quantizer mismatch is de-
fined at time T by in,, = = [d,, (x,)] 2 . In this particular example, the
time average mismatch _l was approximately (To10- 6 )/4 for the range
10-ý < 3 < 10-'. For high values of 3, the SNR and SEGSNR values are
very closed to those obtained with a fixed quantizer having nominal val-
ues as its boundary points. This is easily verified by comparing the SNR
values given in Table 2 for 3 = 0.1 and p-law as nominal values, to those
given in Table 1 for a fixed 4-bit p-law quantizer. Similarly for 3 = 0.1
and zero as nominal values, the algorithm yields a constant zero output
signal W' = 0 such that D 2 = E[(u _ 7')2] = E[U2] and therefore SNR=0
dB. Use of a forgetting factor, together with p-law nominal values, in
FBAR increases the coder robustness and performance: SNR=16.79 dB
and SEGSNR=14.09 dB for 3 = 10 ' over SNR=1.20 dB and SEGSNR
-- 6.76 dB for 3 = 0.
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Figure 2: Instantaneous and Syllabic adaptation in quantizing speech sig-
nal.

Top: input speech sentence /She had your dark suit in greasy wash water
all year/ of 51406 samples used in the simulations. Bottom left: Time evo-
lution of the boundary points for a 3-bit instantaneous adaptive quantizer
(r7 = 0.49, /3 =0.0, r = 1). The quantizer has been adapted over the entire
duration of the signal but only the first 0.6 seconds of the evolution are repre-
sented here. Bottom right: Time evolution of the boundary points for a 3-bit
syllabic adaptive quantizer (7/ = 0.049, f3 = 0.0, r = 1).
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Quantizer / R= og2 N I
type $ bits -+ 3 5

Uniform SNR 1.95 8.64 15.06
I SEGSNB -5.46(') 1.21 7.74

I

p-law SNR ( 8.44 13.51 19.67
(pu = 255) SEGSNR 5.11 11.52 18.10

FBAR1 (***) SNR 12.10 18.41 23.14
(± 0.052) (± 0.057) (± 0.091)

SEGSNR 12.71 17.53 22.06
(± 0.046) (± 0.044) (± 0.062)

Table 1: SNR and SEGSNR values attained in 3-4- and 5-bit coding of
example speech signal. All entries in dB,
(*) The presence of zero amplitude input segments may yield occasionally ex-
tremely large negative SEGSNR values.
(**) Experimental SNR values for p-law agree with those found by the theo-
retical formula SNRý-law(dB) = 6.02R - 10.1 derived by Smith for p = 255
[10].
(***) For FBAR1 results, the values given are averages over 20 runs with their
standard deviations.

Nominal Average SNR SEGSNR
values { *} mismatch M (dB) (dB)

0.0 0.15 1.20 -6.76
1E-I 0.0 1.2E-5 0.0 -0.23
1E-I pL-law 1.2E-5 14.36 11.82
1E-2 p-law 1.4E-4 16.11 13.09
1E-3 p-law 1.5E-3 16.79 14.09
1E-4 p-law 1.5E-2 10.66 9.40
1E-5 p-law 0.94E-1 3.18 -4.61

Table 2: SNR and SEGSNR (dB) values attained in 4-bit coding of example
speech signal in presence of an initial encoder/decoder mismatch m 0 = 0.15.
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The effect of transmission errors is evaluated by simulating a binary
symmetric channel which produces errors with a probability p, = 10-1.
Because the probability of one or more errors in the received R-bit code-
word is approximately equal to Rpe for small pe [7], there were approx-
imately 200 transmission errors over the entire duration of the signal.
For the channel studied, performance results are given in Table 3 for
a 4-bit quantizer with a-law nominal values and different values of the
forgetting factor 3. Results clearly indicate that the use of a forgetting
factor yields significant improvements in SNR and SEGSNR. It is rea-
sonable to think that large displacements caused by the most significant
bit (MSB) in error, most significantly contribute to a decrease in SNR.
However, Table 3 reports that when the MSB is protected, improvements
in adaptating are not greater than 1.5 dB when 0 4 0.

Average Performance (dB)
mismatch

SNR SEGSNR,

0.0 1.52 + 1.68 -6.66 + 5.35 -7.25 ± 6.26
[0.75 ± 1.13] [-1.44 ± 6.67] [-4.10 ± 6.51]

1E-1 1.30E-5 ± 2.OE-6 12.63 - 0.20 9.13 ± 0.36
[0.80E-5 - 1.OE-6] [13.28 + 0.19] [10.38 ± 0.25]

1E-2 1.04E-4 + 1.9E-5 13.91 + 0.32 10.24 + 0.30
[6.40E-5 t 1.OE-5] [14.98 - 0.15] [11.70 ± 0.18]

1E-3 1.12E-3 ± 4.8E-4 15.35 ± 0.50 11.36 ± 0.45
[8.05E-4 4 3.2E-4] [16.70 + 0.37] [12.92 ± 0.39]

1E-4 6.54E-2 ± 5.2E-2 5.88 + 3.43 3.29 ± 3.25
[6.91E-2 ± 5.3E-2] [5.62 ±- 3.12] [2.67 ± 2.36]

1E-5 5.07E-1± 4.4E-1 -2.51 - 4.15 -4.27 ± 4.69
[6.11E-1 ± 6.9E-1] [-2.61 - 4.58] [-4.58 - 4.71]

Table 3: SNR and SEGSNR (dB) values attained in a 4-bit coding of example
speech signal in presence of a noisy binary symetric channel with p, = 10-3.
The quantizers have p-law nominal values but different values of forgetting
factor 03. The values given are averages over 20 runs with their standard
deviations. The values in brackets are given when the MSB is protected.
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5 CONCLUSION

In this article, a related robust backward adaptive quantizer has been
introduced for waveform coding in the presence of noisy channels. It has
been shown that the forgetting term used in the learning rule dissipates
transmission errors or initial quantizer mismatches while maintaining the
ability to adapt itself to changes in the input p.d.f. and minimizing r-th
power law distortion measure. Furthermore, if a hardware implementa-
tion is envisioned, the unsupervised learning rule will be able to adjust
itself to initial mismatches and to long term drifts in component char-
acteristics, hence avoiding the problem of pair-wise tuning parameters
between encoders and decoders.
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Abstract- We present the general formulation for adaptive equalization by
distribution learning [1] in which conditional probability mass function (pmf)
of the transmitted signal given the received is parametrized by a general
neural network structure. The parameters of the pmf are computed by min-
imization of the accumulated relative entropy (ARE) cost function. The
equivalence of ARE minimization to maximum partial log-likelihood (MPLL)
estimation is established under certain regularity conditions which enables us
to bypass the requirement that the true conditionals be known. The large
sample properties of MPLL estimator are obtained under further regularity
conditions, and the binary case with sigmoidal perceptron as the conditional
pmf model [1, 2] is shown to be a special case of the new framework. Re-
sults are presented which show that the multilayer perceptron (MLP) equal-
izer based on ARE minimization can always recover from convergence at the
wrong extreme whereas the mean square error (MSE) based MLP can not.

INTRODUCTION

As more complex channels are required to carry increasing amounts of data
in today's demanding communications applications, the need to develop more
sophisticated equalization schemes has become more evident. To overcome
the inherent limitation of linear equalizers, a number of neural network adap-
tive equalizers have been introduced (see e.g. [5, 6, 9]), and it is shown that
these equalizers can successfully equalize nonlinear channels where linear
equalizers might fail. The neural network equalizer also offers the advan-
tage of low-power low-complexity analog hardware implementation which is
particularly important in portable applications. These neural network equal-
izers view channel equalization as a classification problem and are based on
the traditional mean square error (MSE) performance criterion. Recently, we
have introduced a new approach to channel equalization which is based on
probability distribution learning [1], and uses relative entropy (RE) between
the true and estimated conditional probability density functions as the perfor-
mance measure to be minimized. The conditional probability mass function

'Research supported in part by Engineering Foundation grant RI-A-94-08.
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(pmf) of the transmitted signal given the received signal is parametrized by
a general neural network architecture. It is shown that when multilayer per-
ceptrons (MLP) are chosen as the parametrized model, the equalizer can
successfully combat multi-path [1] and nonlinear distortions [2], and can al-
ways recover from convergence at the wrong extreme as opposed to the MSE
based MLP's [1, 2].

In this paper, we extend our distribution learning formulation to finite
symbol alphabets by working in the partial likelihood framework. Partial like-
lihood, a relatively new method in estimation theory, allows for inference as
the time unfolds. Hence it bypasses the problem with maximum likelihood or
quasi-maximum likelihood estimation which require that the auxiliary infor-
mation be known in full throughout the period of observation when they are
extended to dependent observations [4]. The general formulation we present
for channel equalization here encompasses both supervised and unsupervised
(blind) mode of operation for a general neural network structure. In this
framework, adaptive channel equalization can be considered as a conditional
pmf estimation problem by accumulated relative entropy (ARE) minimization
which we show to be equivalent to maximum partial log-likelihood (MPLL)
statistical estimation problem. Unlike ARE minimization, MPLL estimation
does not require that we know the true conditionals which in general are
never available, hence the parameters of the conditional distribution model
can be directly learned on the chosen neural network model. We show that
the consistency and asymptotic normality of MPLL estimator can be obtained
under further regularity conditions. In [2], we consider a simple binary com-
munication channel equalization problem and use the sigmoidal perceptron
to parametrize the conditional pmf. We then employ first order stochastic
approximation of the true conditionals to write the stochastic variant of the
RE cost function, and then note its equivalence to MPLL estimation. Here,
we consider the binary case with the sigmoidal model as an example and
show that it is a special case of the new framework. Also, for the perceptron
model, we present simulation studies which show that the ARE based MLP
equalizer can always recover from convergence at the wrong extreme whereas
the MSE based MLP can not. This property of the RE based equalizer is dis-
cussed in [2] within an extension of the well-formed cost functions framework
of Wittner and Denker [11].

CHANNEL EQUALIZATION BY DISTRIBUTION LEARNING

We formulate adaptive equalization problem as follows: A sequence of sym-
bols x(n), taking values from a finite alphabet S {ao, a,,..., aMl, is trans-
mitted through a channel h which acts as a nonlinear operator on the incoming
signal. Let .F, be the u-field generated by the events of the form z(n) = [x(n-
1),..., x(1), x(O); y(n),..., y(l), y(O)], where, y(n)'s are the time dependent
covariates of x(n). Typically, y(n) is the noise corrupted channel output. A
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common model for the channel output would be y(n) = h(xK(n))+v(n) where
v(n) is the additive noise component, xK(n) = [x(n), x(n-1), ... , x(n-K+l)],
and h : RK --+ R. If Y,, does not include the transmitted sequence x(n) but
only its covariates, this results in unsupervised (blind) mode of operation
for the equalizer. Thus .7, = o{1, z(n)} represents all that is known to the
observer at time n, and Y,_j C T,•. Note that since Tn includes the entire
history po (x .T,) can have a recurrent structure as well.

Our aim is to estimate the conditional pmfp(xI.F,), Vx E S. We parametrize
the conditional probability by a neural network as follows:

pO(xI 9n) = f(x, c(1), g(zN(n), 0)). (1)

Here, 0 is the vector of network weights, 0 E ) where 0 is a compact
parameter set and ZN(n) is a subset of z(n) containing the most recent N
values of z(n). The term g(zN(n), 6) is the output of the neural network, f(-)
and g() are continuous differentiable functions, and c(O) and f(-) are chosen
such that ZIEsp0(xI.F,) 1.

The relative entropy (RE), or the Kullback-Leibler distance, [8] a funda-
mental information theoretic measure of how accurate the estimated condi-
tional pmf is an approximation to the true conditional pmf,

D.(p.Ip)= po Poo (x[1,) (2)
xESPO(I ý

arises as the natural cost function for this formulation. Note that it is non-
negative, and is equal to zero only when po. = po. In (2) we assumed that 6o
is the weight vector for which f(-) achieves the true conditional pmf. The goal
is then to learn 0 which minimizes the accumulated relative entropy (ARE)
given by

n

1. = Di(pgo.Ipo) (3)
i= 1

in the sequence of observations T1 , _T2, ", fl. However, note that the mini-
mization of this cost function requires that the true conditionals, or that 60
be known. In the next section we show that the ARE minimization problem
is equivalent to MPLL estimation which allows us to overcome this problem.

MAXIMUM PARTIAL LIKELIHOOD ESTIMATION

The optimal network parameters 00 have the fundamental information the-
oretic interpretation that they minimize the Kullback-Leibler information
given the chosen architecture and the ARE performance measure (3). Thus
viewing learning as related to Kullback-Leibler information minimization in
this way implies that learning is a maximum likelihood statistical estimation
procedure for independent observations [10]. Though this may be extended
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to dependent data by discounting the dependence structure in some sense,
this still requires that the auxiliary information be known in full throughout
the period of observation [7]. It is obvious that this requirement can not be
satisfied in data communications. Partial likelihood (PL) can bypass this
problem by allowing inference from the available information.

The distribution learning problem posed in the previous section can be
cast as a MPLL estimation problem. To show this, we define

ri = In (xIF) and .J, V a Varo0 (ri Ti)
pO(x Fi) i=1

and based on the theory of partial likelihood [12], show the following:

Theorem 1: If there exist a constant 6 > 0, an T oo, continuous functions
f(.) and g(-) such that

P(r, /o'an > 6) -- 1 and 3a,/c•--+p0 (4)

then ARE minimization is equivalent to MPLL estimation, i.e.,

org (rinIl) - rg (maxr')

where £, = H-•= po(x¶j_) is the partial likelihood function and £,. = ln4C
is the partial log-likelihood. (Proof is given in the appendix.)

It then suffices to maximize Cn to estimate the conditional distribution,
and the value b, maximizing £C, provides an estimate of the true parameter
Oo. Consistency and asymptotic normality are essential properties to ensure
that as the network experience grows, the probability of the network approxi-
mation error exceeding any specified level tends to zero. For the parametrized
model of (1) we show the following large sample properties of the MPLL es-
tim ator:

Theorem 2: For f(.) and g(.) as given in Theorem 1, assume conditions
given in (4) hold and that the first and second order derivatives of f(-) and
g(.) exist and are continuous. Then if there exist a i, T (o: and positive
definite matrices Q and Q, such that

3r-,1 Un((Oo) -- p Q, and /3n,-lVn(0o) -,>,Q (5)

where

S - E(71 V), (0) - and i= \7 lnpq (x lJ) (6)
i=1 i=1

then, we can guarantee that 6 is almost surely unique for all sufficiently large
n and as n --+ oo
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(i) 0 -- 00 in probability,
(ii) o(6 -

0 o) -+ Af[0, A] in distribution,
where A = Q 1QQ-1 is the information matrix per observation for estimat-
ing the true parameter Oo. (Proof is given in the appendix.)

EXAMPLE: THE BINARY ALPHABET

Consider the adaptive channel equalization problem where the probability
that the transmitted signal x(n) = 1 from the alphabet {0, 1} is to be deter-
mined from a training sequence, given the finite past of the received signal:
yN(n) = [y(n), y(n - 1), ... , y(n - N + 1)], i.e., ZN+1 = [x(n), yN(n)]. The
conditional pmf pe : RN ý [0, 1] is parametrized such that

pe(x(n) = 11Y,,) = g (eTyN(n))

where g(.) is a differentiable non-linearity such that g'(s) > 0 for all s and
can be chosen as g(s) = 1/(1 + e-s). The pmf is then written as

f(.) = g(.)x(,)(1 - g(.))1-x(,0.

This is the sigmoidal perceptron model we used in [1].

We can reformulate f(.) as

f(.) = exp(x(n)-y,(0) - b. (0)) (7)

where -y(0) TZN(n) and

b, = OTZN(n) - In

1 + exp(--OTyN(n))

For this exponential model (7), we have

rn(0) = -x(n)(-,,(0) - 7y(0o)) + b.(0) - b,(0o)

E(r, IF) -= b,(o) - b,(Oo) - b'(0o)(-y.(o) - -y.(Oo))

Var(rn J•n) = b"(6)(yn(0) - 7,(00))'

where each Oj is a value between 00i and O, and the prime denotes the deriva-
tive with respect to 0.

By Lemma 3A [12]:

n

an-• 2 (7, (0) _ _y,(00))• 2-_ 0.

Since a,-'- Z=(i(0) - -yi(0o))2 is locally uniformly bounded away from
zero conditions given in (4) hold and ARE minimization for this problem is
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equivalent to MPLL estimation. For this model, the consistency conditions
are also satisfied [7].

Dynamics of the LRE algorithm

In [1], we consider the binary case and show that 1,(0) = -tC(O) where
I-, is the stochastic relative entropy (SRE) cost function which results when
we employ first order stochastic approximations for the true conditionals. In
this paper, we consider the sigmoidal perceptron as a special case of the new
formulation and establish the equivalence of ARE minimization to MPLL es-
timation under the conditions given in (4). The parameters of the conditional
pmf model can be estimated by minimizing the SRE or by maximizing PLL
in a number of ways, gradient descent (ascent) learning is one popular al-
ternative. We derive the least relative entropy (LRE) algorithm by gradient
descent minimization of the SRE cost function for the single layer perceptron
and show that it successfully equalizes multipath channels in [1]. The general
formulation for distribution learning with the MLP model is presented in [2]
and is applied to the equalization of of nonlinear channels.

The properties of gradient descent learning on the SRE cost function is
considered in [1, 2]. Particularly, it is shown that the SRE cost function for
single layer perceptron is a well-formed cost function in the sense of Wittner
and Denker [11] and hence gradient descent learning on this cost function is
guaranteed to find a solution. As is well known, there is no such guarantee
with the MSE cost function when used on MLP's, even on those without
any hidden units. The dynamics of gradient descent learning on the SRE
cost, function is also studied by considering its parameter updates [2] and it is
shown that for LRE updates the backpropagated output error is always a non-
vanishing control signal and hence the algorithm can recover from convergence
at the wrong extreme while the MSE based MLP can not. In this paper, we
present a simulation study to demonstrate this fact.

Consider a binary pulse amplitude modulation (PAM) data transmission
system. An abrupt change in the channel response happens during training
of the equalizer and causes misclassifications after initial convergence. We
model the nonlinear channel as a multipath channel (H1(z) = 1 + 0.5z- 6 +
0.25c-'•) followed by a nonlinearity 0.5(.)', and the PAM communication
system has 8 bits per sample with Nyquist pulse shaping. We implement
the LRE algorithm for binary alphabet given in [2] and the gradient descent
minimization of the MSE on the same MLP structure for equalization of the
given channel. Both algorithms have a 3-8-1 MLP structure. In Figure 1(a),
we show the bit error rate (BER) curves for the equalization of this channel
which show that both algorithms do an equally good job of partitioning the
decision region. What is notable is that when we introduce an abrupt change
(an exact sign change) in the channel characteristics after 150 iterations,
causing the decision region to rotate suddenly the LRE can very rapidly adapt
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Figure 1: BER Comparison for MSE and LRE MLP Equalizers
(a) without (b) with an abrupt change at 150 iterations

to this new operating condition. Starting from the very first iteration after the
change it can follow the changes by adapting both its hidden and output layer
weights in a few iterations. As we can observe in Figure l(b), MSE produces
many wrong decisions before it can adapt to this new operating condition. In
Figure 2(a), we show the transient characteristics of both algorithms with the
abrupt change at 150 iterations at a signal to noise ratio (SNR) of 19 dB. As
seen in the figure, LRE can recover from convergence at the wrong extreme
very effectively whereas MSE based MLP needs a considerable amount of
time for the same task. Note that both algorithms have not fully converged
at 150 iterations, and if the sudden change causing misclassifications occurs
later MSE based MLP might not be able to recover. This is shown in Figure

0.8 ... MSE

0.6

S0.4 -f"",""- LRE
.2 ..........

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
iterations n

(a)

0.6

.0. 6 ...... MSE

S0 .4.

0.2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 (0000
iterations n

(b)

Figure 2: Recovery Characteristics for MSE and LRE MLP Equalizers
with an abrupt change at (a) 150 (b) 1000 iterations (SNR =19 dB)
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ME..Eulzrwithout an abrupt changeo0.6

0.2 .

O0 200 400 600 800 1000 1200 1400 1600 1800 2000
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Figure 3: Recovery and Convergence Characteristics for (a) LRE (b)
MSE MLP Equalizers (with abrupt change at n ý= 100, SNR =19 dB)

2(b) by introducing the sudden change at iteration 1000. Again LRE can

very rapidly adapt to the new operating condition, rapidly recovering from

convergence at the wrong extreme. Figures 3 and 4 show the convergence

and recovery characteristics of both MLP equalizers (ARE and MSE based)

with and without the abrupt change when the change occurs at 100 and 1000
iterations respectively.

APPENDIX

Proof of Theorem 1: Let IZn ri== ri, by Theorem 2A [12]

Therefore, Vc > 0, 3N for n > N, for any 0 C 0, we have

1,(0,,')(1 - c) < R,(6-*) < I,,(O,*)(1 + c)

1,(o0*)(1 - e) < 7Z(o*) < T,,(o, *)(1 + e)

where 0,* and K are the values which minimize Y, and IZ, respectively.
Since c is arbitrary, for sufficiently large N, we have

"' (o,, *) = )Z.(0- *)= Z- 7"(o,,*)

almost surely on 0. In addition, we can express 7(0,•*) as

7Z, (0"*) = (00) - t' (0,n)
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MSE MLP Equalizers (with abrupt change at n = 1000, SNR =19 dB)

which implies: arg (mine 1,) = arg (max0/fr).

Proof of Theorem 2: We have V,,(1) = VVTIA(0) (6). Since conditions given
in (5) hold, 6,(0) is concave with respect to 0 (Theorem 2E [12]). Therefore
0 -- 00 in probability.

Let S,(O) = ji'lui(O), then, we have

n

E(ui jFi) 0 0 and U,,(0) = - E(vi.Fi)
i=1

therefore S,(0) is a martingale. By considering the first two terms in the
Taylor expansion of VLC(6 0 ) we can write

0 Vfn(Oo) ' S(0 0 ) + (0 - Oo)V-(Oo)

then
/3n(O 0 2o (3iS"(00 )) (-I3. Vný(0 0~)

Since the conditions given in (5) are satisfied and that S,,(0) is a martingale,
by invoking Martingale central limit theorem [3], we have
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therefore

•-• (b -- 00)--D Ar[O, Q-'Q1Q- 1].

REFERENCES

[1] T. Adali and M. K. Sdnmez, "Channel equalization with perceptrons:
an information theoretic approach," in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing (Adelaide, Australia), April 1994, vol 3, pp.
297-300.

[2] T. Adali, M. K. Sdnmez, and K. Patel, "On the dynamics of the LRE
Algorithm: A distribution learning approach to adaptive equalization,"
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (Detroit,
Michigan), May 1995, pp. 929-932.

[3] B. M. Brown, "Martingale central limit theorems," Ann. Math. Statist.,
vol. 44, pp. 59-66, 1971.

[4] D.R. Cox, "Partial likelihood," Biometrika, vol. 62, pp. 69-72, 1975.

[5] G. J. Gibson, S. Siu, and C. F. N. Cowan, "The application of nonlin-
ear structures to the reconstruction of binary signals," in IEEE Trans.
Signal Processing, pp. 1877-1884, vol. 39, no. 8, Aug. 1991.

[6] G. Kechriotis, E. Zervas, and E. S. Manolakos, "Using recurrent neu-
ral networks for adaptive communication channel equalization," IEEE
Trans. on Neural Networks, vol. 5, no. 2, pp. 267-278, March 1994.

[7] B. Kedem, "Time series analysis by higher order crossings", IEEE press,
New York, N.Y., 1994.

[8] L. Kullback, and R. A. Leibler, "On information and sufficiency," An-
nals of Mathematical Statistics 22, pp. 79-86, 1951.

[9] M. Meyer and G. Pfeiffer,"Multilayer perceptron based decision feed-
back equalisers for channels with intersymbol interference, "IEE Pro-
ceedings, Vol. 140, No.6, pp. 420-424, 1993.

[10] H. White, "Learning in artificial neural networks: A statistical perspec-
tive," Neural Computation, vol. 1, pp. 425-464, 1989.

[11] B.S. Wittner and J.S. Denker, "Strategies for teaching layered networks
classification tasks," Neural Info. Proc. Systems, (Denver, CO), p.850-
859, 1988.

[12] W. H. Wong, "Theory of partial likelihood," Ann. Statist., 14, pp. 88-
123, 1986.

550



CONSTRUCTIVE NEURAL NETWORK DESIGN
FOR THE SOLUTION OF TWO-STATE
CLASSIFICATION PROBLEMS WITH

APPLICATION TO CHANNEL EQUALIZATION

Catherine Z. W. Hassell Sweatman
Department of Electrical Engineering, University of Edinburgh,

Mayfield Rd, Edinburgh EH9 3JZ, U. K.
Supported by EPSRC Grant GR/J34248

Gavin J. Gibson Bernard Mulgrew

ABSTRACT

We describe a deterministic algorithm for designing a MLP
for the solution of a two-state classification problem. The Slab
Algorithm was motivated by the problem of reconstructing
digital signals which have been passed through a real linear
dispersive channel of finite impulse response and corrupted
with additive noise. Our algorithm is designed to separate
two finite disjoint sets of points by constructing a MLP with
one hidden layer and a single output node. In the linearly sep-
arable case, no hidden layer is constructed. The parameters
of the network are identified by standard linear programming
techniques. The performance of the channel equalizer con-
structed by the Slab Algorithm is compared with that of a
Bayesian optimal equalizer.

1 INTRODUCTION
We describe a deterministic algorithm for designing a multi-layer perceptron
(MLP) [7] for the solution of a two-state classification problem. This algo-
rithm is illustrated in the context of channel equalization [2], but is more
generally applicable.

We consider MLPs constructed from McCulloch-Pitts units [3]. A McCull-
och-Pitts unit or node (see Figure 1) accepts a real-valued input y E R"' and
calculates as its output the quantity f(yTw - 0), where f is the Heaviside
step function and w G Rm and 0 G R are the weight vector and threshold of
the node, respectively. Attention is restricted to MLPs with one hidden layer
of nodes and a single output node (see [1] and Figure 1).

0-7803-2739-X/95 $4.00 © 1995 IEEE
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2 CHANNEL EQUALIZATION
The algorithm presented was motivated by the problem of reconstructing digi-
tal signals which have been passed through a dispersive channel and corrupted
with additive noise as depicted in Figure 2. Explicitly, a random sequence
{xj}, xi E {-1, 1}, is passed through a real linear dispersive channel of finite
impulse response with response function a(z) = ao + a1 z-1 + ... + aa-kZ
where the coefficients a. are real, 0 < j _< k, and ao and ak are non-zero;
producing a sequence of outputs, {yi}, where yN = Ey=0ajxi-j. A term, ouj,
which represents additive noise, is then added to each yj to produce an ob-
servation sequence {fj}. The task of the equalizer is to use the information
represented by the observed channel outputs .i, ji- 1, ... , to produce
an estimate of the input symbol Xi-d, where the integer d > 0 is the delay
and rm > d. The integer rn is the order of the equalizer. The input samples
xi are chosen frlom {-1, 1} with equal probability and are assumed to be
independent of one another.

In the absence of noise the problem is to separate two sets of points in
1•r". These sets of points are the images of the sets
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X1 = {(XO,...,Xk+, ,.-l)T : xi {-1, 1), O<i<k+m-1, xd= 1} and

X-1= {(Xo,...,Xk+,--1)T : xi (={-1, 1}, 0 <i < k+m-1, Xd= -11

under the linear transformation represented by the m x (m + k) matrix

ao a, a 2  ... ak 0 0 ... 0
A= 0 a 0  a, ... ak-i ak 0 ... 0

0 ... ... ... 0 a0 a, ... ah

Let P(md)(1) = AX 1 and P(,,d)(-1) = AX_1 , as defined in [2].
When noise is present, the observed channel outputs i = (9 .... , ý,_-+,)T

represent elements of P(md)(±1) which are corrupted in each component in-
dependently by noise. For low values of the noise variance, each _' is very close
to an element of P(m,d)(1) or P(,d),(- 1). The equalizer must represent some
function g : -- {-1, 1} such that g(A(xi, xi-j.... , Xi-(k+m.-1))T) = Xi-d.

Previous attempts to use the MLP as a channel equalizer are discussed by
Gibson et al. [2]. In general, P(md)(1) and P(m,d)(-l) cannot be separated
by a single hyperplane, that is, are not linearly separable, and so a linear
transversal equalizer (represented by a single node) will fail to separate them.
It has been shown that for d = 0, the sets will be linearly separable, for all
sufficiently large m, if and only if the channel is minimum phase; that is, if all
the roots of zka(z) lie strictly within the unit circle in the complex plane [2].
Even if the two sets are linearly separable, the optimal decision boundary is
generally non-linear.

Motivated by these difficulties, the MLP was considered. Simulations have
shown [2] that a MLP with two hidden layers trained by back propagation
[5] can approximate the decision boundary of an optimal equalizer [2] better
than can a linear transversal equalizer. In this study, the architecture was
chosen by experiment. The training was slow and the decision boundaries
obtained were sub-optimal in general. The convergence was often too slow to
be of use in the case of time-dependent response function coefficients. In this
paper we adopt an alternative approach.

There are basically two strategies for channel equalization; either estimat-
ing the channel characteristics from the data and constructing the data equal-
izer, or estimating the equalizer directly from the data. The former strategy
is usually preferred in the case of time-dependent channel characteristics, or
when speed is required, as fewer parameters need to be estimated. Methods
for estimating the channel are described and assessed by McLaughlin [4].

These observations led us to develop and propose a new algorithm we call
the Slab Algorithm to construct a solution in the form of a MLP with one
hidden layer and a single output node, assuming knowledge of the channel
characteristics.
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3 THE SLAB ALGORITHM
Let U and V be the cells of a partition of a finite set of points in "''. Our
aim is to construct a classifier that separates U from V. Let U0 = U and
Vo = V. Iterate the following steps, p > 1.

1. Find a slab
S {y G R" up< w _< bpI

where ap, bp G R, ap _ bp, wP C R' and wP ý4 0, such that

U c {y E p <yTw__P}, Vp_ C {y E Hn, : yTwP < bp

and the width of the slab is minimal (in the sense defined below).

2. Let Up = Up-, ASp and let Vp= V_ ASp. If = VU = 0 then stop.
Otherwise, return to step 1, increasing p by one.

We use standard linear programming techniques to identify the slabs. By
'find a slab of minimal width' we mean if Up-, and Vp-1 are linearly separable,
then Sp must be a separating hyperplane such that (Up-, u Vp-) n S. = 0;
otherwise, attempt to minimize the number of elements in (Up- 1 U V-l) ASI.

Knowledge of the slabs Sp, p > 1, enables a separating network to be
specified. If U and V are linearly separable, the Slab Algorithm yields a
single separating hyperplane, S1. A network comprising a single node with
weight vector wt and threshold a, = b6 will separate U from V.

Otherwise, let Si, ... , Sq+l, q > 1, be the slabs calculated. For p,
1 < p < q, Sp specifies a pair of hidden layer nodes. The hidden layer nodes
are assigned weights wP,..., 'wP, with threshold a. and weights -w ,..., -wp

with threshold -b,. The weights for the output node in the second layer
which multiply the outputs from the two nodes corresponding to SP are 1/ 2p
and -1/ 2 ', respectively. These two nodes combine to contribute 1/ 2 ' to the
output node from points in Up-1\Sp, -1/ 2P to the output node from points
in Vp 1\Sp and zero from points in (Up_ 1 U Vp_1) A Sp, 1 < p _< q. The last
node in the hidden layer is specified by the separating hyperplane

Sq+l C H, : yTwq+l a,+l =b+l} such that

Uq C {yE H, : yTw,+l > b,+±} and Vq C {_y C": yTwq+l <bq+±}. The

last hidden layer node has weights w+l,..., wq+ 1 with threshold bq+,. The

corresponding weight for the output node in the second layer is 1/2(q+1). This
output node is assigned the threshold 1/2(1+2). We make use of the geometric

series 1/2+ 1/4+ 1/8+.. Note that 1/2± 1/4±1/8 ±...-1/2'+' > 1/2(
Hence, when q >_ 1 and 1 < p _< q, points in Up 1 \Sp and VW-x\Sp are well
classified by the pair of nodes corresponding to SP and will not be misclassified
by the addition of further hidden layer nodes.

The number of nodes generated by this process is guaranteed finite because
we ensure that at least one point in Up-, U VW- is excluded from the slab Sp
at each step.
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Figure 3: MLP Constructed by the Slab Algorithm

It is possible to replace the p-th pair of hidden layer nodes, 1 < p _ q,
when q > 1, by a single hidden layer node with two thresholds, ap and bp
and node activation function f : R --+ {-1, 0, 1} defined by f(x) = -1 if
x < ap, f(x) = 0 if ap :_ x < bp and f(x) = 1 if x > bp. The outputs
from these nodes (inputs to the output node) are multiplied by the weights
1/2, 1/4, 1/8,..., 1 / 2 q, respectively.

The slabs Sp, 1 < p _< q + 1, q > 0, are determined by linear programming
as follows.

1. We first try to separate Up- 1 from Vp-j with a hyperplane

Sp= { 'y : ap= yTwP = bp}

such that

Up-1 C{y ER : yTwP> ap} and Vp-j g {y E R m : yT~u <ap}.

Linear programming constraints are expressed in the form of linear in-
equalities or equations, but not as strict inequalities. Hence we seek a
separating slab of non-zero thickness

SP= {yER : Cp <_ yTwP < dp}

where cp, dp G R, cp +1 = dp, 2 E Rm , wP 0 such that

Up-1C {y E R' : YTwP > dp} and Vp C {yE Rm : YTwPP < cp}.
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The constraints which must be satisfied are

(a) LZwP > dp if u E Up-1

(b) vTwp < c if v V Vp-1 and

(c) 0 < dp - cp 1

while minimizing cp - dp. Begin by setting wL = 0 and cp = dp = 0. If
UP-, and V,-1 are linearly separable then, by linear programming, we
can find a separating slab S such that cp + 1 = dp and wP # Q. Set
SP {_y E Rm : yTtop = 1/2 x (cp + dp)}. No more slabs are required.

2. Failure to find a suitable wP, cp and dp as described above indicates
that U._1 and Vp-1 are not linearly separable. In this case, try to find
a slab

' ={yE" m  a -_ ywP < b'}
where a' b, V G , a' + 1 = V, w C Rm , wPO

Up_• lC{y E m : yT Wp > a I} and W- c {_G m : YT to<b

containing as few elements as possible in Up-, U Vp-j.

The constraints to satisfy are
(a) jUTwp > a' if u C

(b) vTwP < b' if v C Vp- 1 and

(c) V) - a' 1
while minimizing -_ruu•_ (uTwP - b;) ± v (vwP - ). Begin

by setting wP = 0 and a' = .= 0.

This method yields a suitable slab S' {y "' a' _< YTWp < }

whose upper bounding hyperplane {y n' : yTwP = } contains
elements in V1.- and whose lower bounding hyperplane
{y G m : yTwp = a'} contains elements in Up-,.

With our noisy channel equalization application in mind, shift the slab
boundaries outwards. If UpI\Sp 0 0, let b =- minUE(U_,\s,){u TwP}
and let bp = 1/2x (b'+b + ). Else, let bp =V+1/2. If VPA\Sp 0,
let a"= maxvE(vP-,\s,){v T jLP and let a 1/2 x (a' + a'). Else, let
ar = / - 1/2. Define Sp ={y C ' : ap <yTwP __ bp).

Sometimes, one of a pair of hidden layer nodes may be eliminated. If Vp-1 C
SP, replace Sp by a single hyperplane, namely {y C R' : yTwP = bp),
corresponding to a single hidden layer node with weights wP,..., wP and
threshold bP. The corresponding weight for the output node in the second

layer is 1/ 2('). Similarly, if Up- 1 C Sp, replace Sp by the hyperplane
{y E 'm : yTwP = ap}, corresponding to a single hidden layer node with
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Figure 4: MLP Constructed by the Slab Algorithm for Channel 1

weights -w',..., -wP and threshold -a. The corresponding weight for the
output node in the second layer is -1/2(P).

In the case of channel equalization, the hyperplanes bounding each slab
may be chosen equidistant from the origin and the final separating hyperplane
may be chosen to contain the origin. Note that y E P(m,d)(l) if and only if
-Y e P(m,d)(--). Taking account of this symmetry reduces the number of
parameters to be determined (for a general study see [6]). In a more general
case, this symmetry will not be present. We also require _0 P(m,d)(±+).

4 COMPARISONS
Failure rates, called bit error rates (BERs), for the two channels defined by

1. k = 1, m = 2, d =0, a=O 0.5, al = 1.0 (see Figures 4 and 6) and

2. k = 2, ? = 2, d 1, a0 = 0.333, a1 = 0.667, a2 = 1.000 (see Figures 5
and 7)

were simulated at signal-to-noise ratios between 1dB and 20dB, in steps of
1dB, using decision boundaries formed by the Slab Algorithm and a Bayesian
optimal equalizer (see [2]). It was assumed that the additive noise samples ai
were chosen randomly and independently from a Gaussian distribution with
mean 0 and variance o-2.

These BERs suggest that the Slab Algorithm may be used to construct a
channel equalizer whose performance approximates that of a Bayesian optimal
equalizer well, especially at high signal-to-noise ratios.
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Figure 5: MLP Constructed by the Slab Algorithm for Channel 2

In each case, the sets P(md)(±l) are not linearly separable (see Figures 4
and 5). Furthermore, the decision boundary of the Bayesian optimal equalizer
is highly non-linear. So, a LTE is totally inadequate, producing a high BER.

5 CONCLUSIONS
The Slab Algorithm will always succeed in separating two finite disjoint sets
of points in H'. It produces a MLP whose design is simple and predictable. If
the sets to be separated are linearly separable, it constructs a single separating
node. Otherwise, it constructs a MLP with one hidden layer and one output
node. In the latter case, the decision boundary is non-linear, formed from
hyperplanes.

Our results suggest that the Slab Algorithm may be used to construct a
channel equalizer whose performance approximates that of an optimal equal-
izer well, especially at high signal-to-noise ratios. Our algorithm separates
the sets P(,,d)(-1) efficiently, due to the symmetry y G P(md)(1) if and only
if -Y E P(,m,d)(-1). Its ability to produce a solution to the equalization prob-
lem without the need for long training sequences may mean it is useful in the
case of time varying channels.

Our main aim in this paper has been to demonstrate the value of the so-
lutions produced by the Slab Algorithm rather than to optimise its efficiency.
Currently, we are investigating alternative methods of identifying the slabs
in order to reduce the computational complexity of the algorithm, and to
facilitate its implementation in real systems.
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Abstract
In this paper, we present a new technique for mapping the backpropagation

learning algorithm on a mesh signal processor. The optimal sub-paridioning
of computation and communication, and data replication techniques are the
key features of our algorithm. Theoretical analysis and simulation results,
using the MIT Lincoln Lab simulator, show that our scheme performs better
than the other schemes. 1

1 Introduction
The backpropagation neural networks algorithm (BPN) is one of the most

popular neural networks learning algorithms. It has been applied to a num-
ber of diverse applications [5]. Because of the high time complexity of the
algorithm on a single processor computer, the development of efficient multi-
processor parallel algorithm is very essential. Several architectures, including
linear arrays, systolic arrays, meshes, and hypercubes have been explored
to implement BPN. Mesh-based machines have been explored by many re-
searchers [6]-[10].

Most of the research in the area of algorithms mapping on an MCC deals
with architectures based on simple PEs having small or no local memory.
These architectures may contain 100's or 1000's of PEs [11]-[13]. In this case,
the processor array needs to be as large as the data structure in order to
assign one PE per data element. Therefore, this paradigm poorly performs
for a data structure much larger or much smaller than the size of the processor
array. Considering the simple architecture of an MCC and the tremendous
advancement in the digital signal processor (DSP) technology, where leading
off-the-shelf DSPs like C-40 and ADSP21060 also support multiprocessing, an
MCC can be easily designed using these DSPs. Our parallel formulation deals
with the Mesh connected computer based on such digital Signal Processors
MSP), mesh signal processor. In the case of an MSP, the array size is smaller
typically 4 x 4 or 8 x 8) due to high computational power and the large local

memory of the DSPs. The small size of the processor array and large local
memory per PE ensure that this paradigm will perform equally well for large
and small data structures.

'This research has been supported in part by Analog Devices, Inc, Norwood
and Advanced Projects Research Agency (ARPA), under contract 24-6-R8081-OA0,
1994-95.
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This paper is organized as follows. Section 2 describes an MSP. Section 3
lists efficient techniques for mapping algorithms on an MSP. Section 4 gives
our new parallel formulation. Section 5 shows the software environment for
the MIT Lincoln Lab's simulator. Section 6 contains the concluding remarks.

2 Mesh Signal Processor
An example of an MSP is shown in Fig. (1). In an MSP, the most notable

features of a DSP are a massive on-chip dual ported static memory and an
I/O processor with multi DMA channels. Provision of the dual port memory
and I/O processor allows overlap of communication and computation. Both
the core processor and the I/O processor have access, via the external port,
to the external bus. The DSP includes at least 4 link ports, two bidirectional
serial ports, an external port, shared memory, and a broadcast mode to all
PEs for multiprocessing support. In an MSP with row broadcasting (MRB),
the PEs in the same row are connected to a row bus (RB). In an MSP with
row-column broadcasting (MRCB), the PEs in the same row or column are
connected to a bus.

3 Our efficient techniques
In this section we describe efficient techniques for designing optimal BPN

or other signal processing algorithms on an MSP.

3.1 Technique 1 Optimal Sub-Partitioning of the Computa-
tion

The array size for an MSP is smaller, therefore each PE contains a large
amount of data set as opposed to one element per PE. In this situation,
execution time can be substantially reduced by subpartitioning computation
in each PE. This technique is explained by the following example.

Example 1 In parallel implementations of some of the signal processing
algorithms on an MSP it is necessary to find the sum of sub-arrays distributed
over rows. Each PE holds a sub-array ý E R!N and corresponding elements of

are to be added in every row to obtain the resultant array c in each row.

Algorithm I: In a plain mesh, one way to compute the sum is to find
the sum of arrays in two adjacent PE and place the result in the left PE and
then sum of these two PEs are computed which are now two PE apart, and
this pattern is repeated until the final array c is obtained. P - 1 shifts and
log 2P addition operations are required. Every shift moves AN data elements,
which is followed by N additions. Therefore

to = N(P - 1)t,, and tp = N(lo12P)ta

where t, is the time required to shift one element from one PE to its nearest
neighbor, and t,, is the computation time for one addition.

Algorithm II: In an MRB, the RBs are used for reducing the commu-
nication time. This is accomplished in two phases [12]. The first phase is
like Algorithm 1, where the links are used to find the sum of sub-arrays in a
block of d adjacent PEs. In second phase of the algorithm the partial sum
in the active elements at distance d apart are added using the RBs. This is
achieved in (P/d- 1) broadcasts, and in every broadcast N data elements are
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broadcasted which is followed by N additions. Finally the first PE in each

row has the c array for its row. Thus

teom = (d - 1)Nt, + - 1) Ntb, and tp= (lo 2d + -- -1 Nta

were tb is the time required for shifting one element via bus. The tom will

be minimum if d = (t)P-

Algorithm III Our Algorithm An optimal algorithm for the given
problem can be designed by sub-partitioning the computations in each PE.
Each PE sub-partitions its N elements of a into P subgroups of N/P ele-
ments each. Here, for simplicity, we assume that P is a multiple of N. In
each iteration, every PE shifts only one of the subgroups of N/P elements
with starting index [(i + k) modulo P]mý, where k is the column location of
the PE and k = 0,1,..., P - 1, and i is the iteration of the algorithm and
i = 1,2,..., P - 1. Every PE adds NIP of its corresponding elements into
the new N/P elements. This pattern is repeated for P - 1 iterations. This
technique for N = 4 and P = 4 is shown in Fig. (2). Thus

t (om ( ) (P - 1)t,, and tp = (N) (P - 1)ta

Finally every PE has N/P data elements of the final array c with starting
index kN-, Fig. (3) shows that our technique yields the best results without
using any broadcasting features of the MSP during its computation. By
reversing the communication process, a copy of the resultant array can be
stored in every PE of the row.
3.2 Technique 2 Optimal Partitioning of the Data Set

The large local memory of a DSP in an MSP can be used for further
reducing the communication cost of parallel algorithms. A PE may need data
stored in other PEs during the execution. The algorithm needs inter-processor
communication to acquire this data. This communication can be removed by
storing copies of the commonly used data in the corresponding PEs. Further,
the data set is partitioned such that the commonly used data is mapped
to the PEs sharing the same broadcasting bus. This process eliminates any
overhead which may result in the process of replicating data to the PEs. For
BPN algorithm the input array is partitioned into P sub-arrays of size NIP
each. These P sub-arrays are broadcasted using the CBs. The desired output
array is also partitioned into P sub-arrays and broadcasted using the RBs or
CBs depending upon the total number of layers in the network. The local
memory requirement of the DSP can be reduced by adding a shared memory
module to each row of an MRB, and to each row and column of an MRCB
[1].
3.3 Technique 3 Optimal Sub-Partitioning of the Communi-

cation
The provision of dual port memory and I/O processor allows overlap of

communication and computation. An optimal sub-partitioning of the commu-
nication can maximize this overlap. Using this technique, the I/O processor
only shifts part of the data required to be moved in each shift operation.
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Then, each PE starts its computations on the received part, while the IO
processor shifts the rest of the data. The optimal overlap depends upon the
values of t, and t,. For instance if t0 > it, for algorithm III an optimal
sub-partitioning of the communication can be achieved if the I/O processor
of each PE only shifts N/2P elements instead of NIP elements. While each
PE is adding it's corresponding N/2P elements into the newly arrived ele-
ments, the I/O processor shifts the rest of the N/2P elements. When each
PE finishes its computation of the first part, the PE starts computing the
second part and the I/O processor starts shifting the pre-computed elements
from the first part. The communication time in this case is reduced to jmt ý.
This saving in the communication is also shown in Fig. (3).

4 Our Parallel Algorithm
Using techniques developed in section 3, steps in the parallel implemen-

tat ion of BPN algorithm on an MRB/MRCB are as follows:

SO: The first step is for the host to broadcast the input array x over the MSP
using CBs according to the following mapping:

x[j]-- PE(*,l) for j IN- .... ,(I+ 1) -1
1=0,1,i ... ,:P - 1I

as a result, each PE in a row stores a sub-array of size NIP in its local
memory, and every PE in the same column has a copy of the sub-array.

SI: The mapping of the desired output array d depends upon the total num-
ber of layers in the network. If the total number of layers is odd the
mapping is same as for the input layer given in step SO. In case the
total number of layers in the network is even, the d is broadcasted
subject to the following mapping:

d[j]--PE(k,*) for -- (k + )D- 1
k =O, 1, ... , P - I

as a result, every PE in a row has a copy of a sub-array of size D/P.

S2: Initial weights are randomly generated in all DSPs. The mapping for the
input layer weights are given below:

wo0[i][j] - PE(C, 1) for i kN,. .. ,(k + 1)- 1;
0j 1-- ,...,( P l)- i

1= 0, 1, ... ,P - 1I

The mapping for the weights of any layer is transpose of the mapping
for its previous layer. For example the mapping for the first hidden
layer weights is transpose of the mapping for the input layer weights
and is given by:

wi[i][j]-- PE(k,1) for (+,...,(+l)N - 1;

j 6 k4 -. ,.... (k + 1) - I
k =0,1,...P - 1;
1= 0, 1'.. P -
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S3: Each PE executes Eq. 4 on its input sub-array and weight sub-matrix.
This computation results in a local-net sub-array in each PE. The
corresponding elements of each sub-array are to be added for obtaining
the final array net. The sum is computed, using algorithm III of section
3. As a result hidden layer output array is obtained. The array is
distributed over column such that now every slave in a row has a copy
of the sub-array. This operation is repeated until the desired output is
obtained.

The communication time for one iteration of the algorithm, using computation
sub-partitioning and data replication techniques is given by

L-1 Mi(P- 1) 2M(P- 1)
t 2om = 2 tp = P t

i=1---

where Mi is the number of neurons in layer i, M is the total number of
neurons in the network, and L is the total number of layers in the network.
This communication cost can be substantially reduced by sub-partitioning the
communication in each DSP and utilizing I/O processor. Using technique III
for computing the array net the communication time can be reduced to

tcom = --:: - (1)

P
The overall execution time per iteration per pattern of the BPN algorithm

on a single node can be approximated by

L

to > MiMi-ltm (2)
i=1

where t , is the time for one multiplication. Using the communication ex-
pression in equation (1), the the parallel run-time per iteration per pattern
is as follows:

tMSP L M
IMP- - 4+_P_ 3

i=1

Using equations (2) and (3), the expression for speedup, SP = can be
-MSP,

obtained.
With little modification in mapping of the weight sub-matrices, the algo-

rithm can be implemented with the same time complexity on an MRB. The
distribution of the input array, the hidden output array, the actual and de-
sired output array and the weights of different layers for a three layers BPN
is shown in Fig(4). For training the network the error array is computed by
subtracting the actual output from desire output. The array is propagated
back through the network, which involves the same computational steps, but
in reverse order. The weights are updated using equation (6). The algorithm
is terminated when total error is less than a pre-specified number.

4.0.1 The Implementation of Algorithm on ADSP 21060 based
MSP

In this section we discuss prototyping the algorithm on a simulator for ADSP-
21060 based MSP. The simulator is developed by Ira Gilbert of the MIT
Lincoln Labs [2]-[3].
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The Processing Element The most notable features of ADSP-21060 are
a massive 4-Mbit of on-chip dual ported static memory and an I/O processor
with 10 DMA channels [4]. Provision of dual port memory and I/O processor
allows overlap of communication and computation. Both the core processor
and the 1/0 processor have access, via the external port, to the external bus.
The 21060 includes six 4-bit-wide link ports, two bidirectional serial ports, 48-
bit-wide external port, shared memory, and a broadcast mode to all processor
for multiprocessing support.

Software Environment We will briefly introduce the software prototyping
environment. Two classes of data variables are used in MSP. The single-valued
variable is restricted to the same value for every slave, and the mullivalued
variable may take on different values in each slave. The shift operation is a
fundamental operation for inter-processor communication. The macro defined
by Shift(B, A, x-dim, y.dim, x-shift, y-shift) shifts an x-dim x y-dim
array A, by x-shift in the x direction and y.shift in the y direction; B is
the destination array. The BPN algorithm requires to add the corresponding
elements of the array local-net in each PE of the row. The Shift macro is
used for shifting these elements from one PE to its neighbor. The code is
shown in Fig. (5).

5 Conclusion
Signal processing algorithms including BPN can be efficiently implemented

using DSP in a mesh architecture. The paper presented efficient techniques for
implementing neural networks and other signal processing algorithm on dig-
ital signal processors based SIMD mesh connected computer. Three efficient
techniques are given which can reduce the computation and communication
time. The first technique reduces computation and communication time by
optimally sub-partition the computation in each DSP, the second technique
reduces the inter-processor communication by utilizes large local memory of
DSP and replicate commonly used data on DSPs sharing the same broad-
casting bus. The third technique further reduces the communication cost by
sub-partitioning the communication and efficiently utilizing the 1/0 proces-
sor and dual port memory for overlapping communication and computation.
The MIT Lincoln Lab simulator does not support DMA programming. We
will implement the simulated algorithms on actual MSP, therefore the exact
numbers for the saving in communication time using DMA and the speedup
will be given in the future work.

Appendix A: Backpropagation Learning Algorithm

The algorithm trains a given feedforward neural network for a given set of
learning patterns. The update step at neuron k of layer j is defined as

xj [k] = fknetk)(4

netk =EiZ j wj_ 1[k][i]xj_..i] (4)

where N is the number of nodes on the previous level (j - 1), xj[k] is the
output of node j of layer k, xj-l[i] is the value of node i on the previous level
j - 1 and wj [k] [i] is the weight on the connection from node i of layer j - 1
to node k of layer j, and fo is a nonlinear function. The activation values
obtained from Eq. (4)are communicated to the next layer, which repeats the
same operation and the actual output is computed. In phase two the error is
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propagated back to the network and weights are modified. Let y[j] and d[j]
be respectively the actual output and the desired output at neuron k of the
output layer. The weight adjustment is based on the following relation:

wj[k][i](t + 1) = wj[k][i](t) + )61j+±[k]xj[i] (5)

where 7 is a positive constant referred to as a learning rate and 6 is the error
signal. For the hidden-to-output neuron level the error signal is given by:

6.[k] = y[k](1 - y[k])(d[k] - y[k]) (6)

For the hidden layers neuron the error signal is computed using the following
relation:

6j [k] = xj [k][1 - xj [k]) 6j+ 1[m]wj[m][k] (7)
m

where m is over all neurons in the layer above the layer of neuron j.
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Figure 1: Mesh Signal Processor

11-lin- 3

Figure 2: Optimal sub-partitioning of computation for P 4 and N 4 for
one row of MSP

Aý-hý 11,..
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Figure 3: Summation of elements spread over row of 8 x8 MSP (a) Commum-
nication time (b) Computation time
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Function: row-sum
Purpose: This function computes the global sum of the data spread row

wise.

Communications: P-1 shifts of the array local-net of N/P elements.

rowsum(multi int index){
int i, j;

multi int shiftnet[NbyP], *local-net-ptr;
for(i=O; i<P - 1; i++)

local-net-ptr = &local-netEindex];
Shift(shift-net, local.net-ptr, NbyP ,i , 1, 0);
for(j=O; j<NbyP; j++)
{

*local-net-ptr += shift-net [j];
local-net-ptr++;

I
index = (index - NbyP) %A N;

}}

Figure 5: The Slave DSP program for summing the elements spread over rows
of an MSP.
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Abstract - The paper describes the implementation of neural systems
for visual motion tracking on a digital neurocomputing platform, i.e.,
the NLX420 Neural Processing Slice. The chip architecture and the
problem model considered greatly facilitate the implementation task,
which involves the fulfilment of critical real-time constraints.
Experimental results confirm the approach validity in terms of both
speed and prediction accuracy; training adjustment techniques are also
examined.

I. RESEARCH BASELINE

The success of neural models in complex applications is mainly based on
their ability to face nonlinear problems and on their example-driven training
flexibility. In real applications, suitable hardware platforms are often
required to fully exploit the benefits of neural systems. Therefore, many
researchers recently addressed the development of hardware circuitry for
neurocomputing [1,21, but no paradigm (analog or digital) has so far
achieved a predominant position in the field. This fact has brought about
some odd situations, in which the effectiveness of neural methods has been
proved by simulation, whereas a final hardware implementation lacks
suitable supporting machinery. This is especially true for those application
domains requiring high speed performances to fulfil strict real-time
constraints.

In this context, the present paper addresses the problem of hardware
implementation of a fully neural system for visual motion tracking.
Previous research [3,4] demonstrated the system validity and showed that a
simple neural architecture can attain effective tracking ability at a very
limited computational cost, thus meeting real-time performance
requirements. The proposed method uses a feedforward, back-propagation
trained network to infer motion quantities from time-consecutive image
frames [3]. The straightforward architecture and its limited computational
complexity allow one to privilege simplicity and modularity in the design
phase.

For the hardware implementation, we chose a commercial digital chip
(NLX420 Neural Processing Slice) suitably developed for neural processing
support [5]. The most interesting aspect of such a platform is its "open"

0-7803-2739-X/95 $4.00 © 1995 IEEE
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internal architecture, which makes it possible to inspect and adjust all
components of the neural model. As a result, a designer can fit the
implementation setup to the specific task considered. In addition, the digital
representation of numerical quantities facilitates the control of the system
accuracy.

The main result of the present research is a method for porting simulated
Multi-Layer Perceptrons (MLPs) onto a digital supporting machinery. The
methodology involves a simple modification to the back-propagation (BP)
[6] training procedure for the network to take into account the finite
precision of the supporting architecture. The approach validity was
confirmed experimentally by the satisfactory results obtained in the visual
application domain. Accuracy has been evaluated by comparing floating-
point simulations with actual chip results; high computation speed allows
the system integration into technical, target-application setups.

II. DIGITAL NEUROIMPLEMENTATION

11.1 - The NLX420 Neural Processing Slice

The NeuraLogix NLX420 Neural Processing Slice ( NPS ) [5] is an 84-
pin chip designed as a digital building block for Neural Networks, and
working with 16-, 8-, 4- or 1-bit precision. In addition to timing and control
signals, the chip provides 16 pins for inputs, 16 for outputs and 16 for
synaptic weights, which are stored in an external RAM. As shown by the
schematic diagram in Fig. 1, 16 Processing Elements (PEs) compute the
inner products of the synaptic inputs, xj, and weights, w. If the number ofJ~J"
network inputs is larger than 16, the process is iterated, and each PE has a
32-bit register where intermediate results, rj, accumulate:

rj =xj*wj ; j= 1._ 16 (1)

When all neuron inputs have been processed, the dot products enter the
transfer function block, where an arbitrary nonlinear function (e.g., sigmoid,
hyperbolic tangent, step) is approximated:

o0 = f(rj) ; j=l....16 (2)

The results are stored in 16 output registers. The nonlinear function J()
can be implemented by a number of segments dependent on the precision
mode selected. With 16-bit precision, the range between -32768 and 32767
is divided into 16 contiguous user-specified regions; each region is
characterized by a specific slope and a specific offset. Among the other
features, the chip supports both synchronous and asynchronous timings. A
loopback connection and a standard 8-bit bus interface are also available.
The NLX420 NPS operates as a sort of neural coprocessor that must be
driven by a host CPU. It is characterized by low cost and good performance,
though the maximum clock rate is 20 Mhz, as it exploits the parallelism
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implicit in neural algorithms. On the other hand, the use of integer
arithmetic and the approximate transfer function, if not suitably tuned, may
affect the precision of calculations.

The results described in this paper have been obtained by using a board
equipped with 4 NPS and as many 32K X 16-bit Weight RAM; in this
configuration, synaptic inputs and control signals are common to the four
processors, thus a layer of 64 neurons is obtained.

11.2- Implementation of MLPs on the NLX 420 NPS

The use of the described NPS to implement a Multi-Layer Perceptron
follows a straightforward approach. After setting the Weight RAM pointer
to select the desired bank of neurons, the host CPU submits the inputs to the
NPS; when the outputs are ready, they are buffered. If a layer has more than
64 neurons, this operation is repeated until the whole layer is processed; the
outputs may then be used as inputs to the next layer.

As the NPS does not provide hardware support for network training,
weights are imported from software simulations of the back-propagation
algorithm. This requires floating-point-into-integer conversion; the 16-bit
mode should always be chosen to preserve an acceptable precision. Network
inputs are typically normalized to either the interval (0,1) or (1,1), whereas
weight values may extend to some units. In this situation, a good
multiplicative factor for both quantities has been found to be 212; smaller
factors would result in unacceptable losses in accuracy, and larger ones
might lead to an overflow. According to this choice, the value 224 in an
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accumulator, r, corresponds to a floating-point value 1.0. As the transfer
function supports only 16-bit input values, the inner product can be fetched
by the external host CPU, right-shifted by 12 positions, and eventually
supplied to the transfer function. This method works well, although
processing time increases because the shift operation is not supported by the
hardware.

II.3 - Techniques for Improving Training

The adjustment of the BP algorithm to take into account the actual
hardware-supported transfer function has yielded interesting results. The
basic idea is to modify the training process so as to take into account the
finite-precision representation of the nonlinearity of the hardware-supported
neurons. A straightforward approach is to replace the ideal sigmoidal
nonlinearity with its on-chip piecewise approximation for the duration of the
whole training process. Such a procedure, however, proves inadequate
mainly because the quantization of the cost function often traps the gradient
descent in "spurious" local minima, especially at early training steps.
According to a more effective procedure, training starts by using an ideal
nonlinearity (either a sigmoid or a hyperbolic tangent) to best follow the
shape of the cost function; when the gradient descent requires a fine
adjustment, the training procedure switches to the piecewise transfer
function (and its derivatives). This reduces the quantization effects brought
about by the final porting phase. The switching from the ideal nonlinearity,
fix), to its quantized version, g(x), is ruled by a threshold-based criterion:
1) back-propagation training proceeds usingf(x) up to a satisfactory solution

(e.g., for which the output mean square error is below a given threshold);
2) the nonlinear function switches to g(x); if the output MSE for the new

function exceeds the cost threshold, BP training restarts until threshold-
based convergence is attained again.

However, other, more refined schemata for the switching process can be
envisioned. A general solution involves a smoother iterative process; at each
iteration, the nonlinear function will be given by:

h() = • f(x)i-(1-oai ).g(x) (3)

where i=1.N; i < xi 1 Vi; a1 =1; cN = O. The parameter x modulates
the transition between the analog and the hardware-supported activation
functions. Crucial parameters characterizing this algorithm include: the
number of steps, N; the actual sequence of decreasing factors, cci; finally, the
mechanism ruling the function switching at each step.

Some elementary considerations may help choose suitable settings. Fast
reduction rates of xi increase the likelihood for gradient descent to be
trapped in a local minimum; moreover, each switching brings about some
perturbation in the cost function and leads to an immediate, apparent
deterioration of evaluated output error. For these reasons, an initial value cc,

1 (involving a truly analog simulation) should be maintained until the
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optimization process has approached a final solution. Then, once started the
sequence of decreasing cc values (3), for each fixed oi, the optimization
process should be allowed to reach proper termination. The number of steps,
N, can be increased to attenuate the negative effects of each switching; in
fact, very fine discretizations of the transition parameter (virtually
simulating a continuous variation of cc) did not yield remarkable
improvements. The values of ci can be selected accordingly: among others,
the most natural choice seems to be:

i-1
a = (4)

N-I

For evaluation purposes, this technique has been applied to the well-
known nested-spirals benchmark. In this strongly nonlinear domain, we
considered the NLX 420 implementation of a reference MLP structure [9]
having topology 2-5-5-5-1; the training set included 194 patterns. In a first
experiment, the weights resulting from software (ideal) simulations were
directly ported onto the hardware platform; this allowed the network to
classify correctly only 93.3% of the training samples; these errors were due
to the actual use of a piecewise transfer function. Then we used the
training-adjustment technique described in (3) and (4), and set N= 6 (i.e., 6
different values for a). At each i-th step (i=1,...,6) we enabled switching to
the next step only after achieving a 0.0% error; when porting the obtained
weights onto the NPS board, the NLX 420 implementation recognized
correctly the whole training set. Figure 2 presents a comparison between an
ideal sigmoid simulation and a piecewise neuroimplementation trained with
the modified technique described above. Experimental evidence indicates a
satisfactory performance of the overall method, especially when considering
that results display generalization performance.

Fig. 2 - Generalization results between SW and HW
Software simulation NLX neuroimplementation
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Ill. NEURAL TARGET TRACKING

The basic approach to neural target tracking is outlined in [3] and
evaluated in [4]. Although the method is quite general, the implementation
described here considers only the tracking of one object that translates in a
scene. The camera is supposed to be initially centered on the object, and the
system's task is to maintain the camera center aligned with the object's
position.

111.1 - Message Generation

The high data dimensionality of visual information inhibits a direct
application of a neural network to sensor signals, mainly due to
generalization constraints [7]. Therefore, in neural target tracking, sensorial
inputs first undergo a dimension-reduction process that works out a pair of
lower-dimensional vectors ("messages") from input images. The only
requirement message generation must meet is to preserve the motion-related
differential information. In the implementation described here, such a
process only involves row-wise and column-wise summations of image
pixels; a sample functional diagram is shown in Fig.3. Other similar
mechanisms can be used for rotation tracking; the method's inherent scale-
invariance compensates for radial motion [4].

Image

/

Fig.3 - Message generation

111.2 - Single-network Motion Estimation

The basic idea underlying neural tracking is to let a network infer a
target's motion parameters from the differential information contained in a
sequence of time-consecutive frames. Due to the aforesaid generalization
constraints, the neural system is supplied with differences between time-
consecutive messages; two different networks provide horizontal and vertical
motion estimates, respectively. The functional schema of the tracking
mechanism for one coordinate axis is outlined in Fig.4.
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A training set includes a set of differences in messages related to several
shifts and several objects; the desired outputs are the actual amplitudes of
such shifts on the image plane. Experimental evidence shows that the
system's run-time performance can become independent of the shapes of
training objects. Roughly speaking, proper training lets the neural network
learn the differential relationship beween object motion and messages.

111.3 - Multinetwork Motion Estimation

Local accuracy has been evaluated by comparing the prediction by each
network with actual object shifts. A different problem lies in global stability,
i.e., the correctness of the system's closed-loop operation. A system may be
locally accurate (i.e., individual prediction may be below a tolerance
threshold) but may prove globally unstable. In practice, error may
accumulate and cause divergence, so that the camera progressively "loses"
the moving object.

An increase in stability on a theoretical basis can be attained by an
integrated approach involving network ensembles [8]. Multinetwork
evaluation combines the results of several independently trained estimators
to work out the system's prediction. The theoretical basis of this schema is
that integrating independent estimators reduces error variance, thus
removing local "spike" errors. For the neural tracking system, averaging
individual estimates can be written as

IKAvToT 1 AV (5)

k=1

where K indicates the number of involved estimators, and vk represents the
estimation result of the i-th network along the v axis (ve {x,y}).

From a circuit-implementation perspective, the multinetwork approach
proves extremely efficient, as its structure provides inherent parallelism;
therefore, it can support multichip hardware implementation.
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IV. EXPERIMENTAL RESULTS

IV.1 - Tracking Stability

The method's effectiveness (in terms of both accuracy and stability) has
been verified in previous research, and will be briefly reviewed here. The
visual testbed for network training involved elementary, binary geometrical
shapes (128x128 pixel) belonging to five classes (circles, squares, L-shapes,
diamonds, hexagons, butterflies). Each shape class included 16 different
scale factors, but only three of them were used to build the actual training
set. A preliminary test phase of the system's performance involved shapes
different from training ones at all 16 possible scales. This analysis made it
possible to verify the method's effectiveness in terms of prediction accuracy.
A further test phase checked the method stability; test shapes moved along a
random trajectory in order to verify that error do not accumulate in closed-
loop operation. Figure 5 presents a sample result; the continuous line plots
the actual object movements, whereas dots mark the positions of the camera
under the control of the tracking system. Other tests involving pictorial
images with moving backgrounds confirmed such stability and shape-
invariance results.

Fig.5 - Stability of the tracking system
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IV.2 - Implementation Consistency

This section analyzes the consistency of the digital neuroimplementation
of the tracking system. To evaluate the proposed method, we compared the
results of software simulations with those obtained by the hardware
implementation. The large number of experiments performed made it
possible to verify the notable accuracy of the hardware predictions, which
always confirmed global stability. A sample of the obtained results on
hardware consistency is given in Fig.6, which presents the normalized
predictions of a single-network estimator and those of a three-network
ensemble. The coordinate axis marks different experiments, whereas the y
axis gives the normalized object shifts (in the graph scale, for example, a y
value of 0.9 corresponds to a vertical object shift of 30 pixels). The graphs
include the results for three different set of experiments with varying shift
amplitudes, covering 10-, 20- and 30-pixel shifts, respectively.

The displayed curves demonstrate the correctness of the hardware model;
incidentally, the graphs also demonstrate the better performance of the
multinetwork estimator, as the three-network curve appears less affected by
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Fig.6 - Comparative tracking results
Top: single-network estimation

Bottom: three-network ensemble estimation
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spikes and suggests a more stable behaviour in following the actual shift
curve.

The system's timing performance ranged from about 1 msec (single-
network setup) to about 2.2 msec (three-network predictor). This value is not
proportional to the former because the available boards made it possible to
exploit some parallelism. Anyway, this performance makes a technical
application to real domains feasible. To sum up, results showed that the
proposed hardware-porting method can support neural target tracking
effectively.

Current research aims to optimize both neural modelling (better training
algorithms) and hardware implementation (efficient architecture design). In
particular, a complete automated environment is being set up, which will
make it possible to include and test additional features, such as low-pass
filtering of local estimates to compensate for local oscillations, and second-
order estimation to take into account accelerated motion.
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Abstract

A low-power circuit for level crossing interval measurements on
continuous-time auditory signals, as obtained from the outputs of an
analog cochlear filter bank, has been designed and fabricated. Exper-
imental results from a fabricated array of 9 level crossing transducers
demonstrate frequency-to-voltage conversion over a range covering the
audio band. The power consumption is less than 20 pW per cell from
a 5 V supply, for the speech frequency range.

1 INTRODUCTION

The location of level crossings of a signal in the time domain reveals much
of its characteristics in the spectral domain. In particular, the average time
interval between consecutive zero crossings yields the inverse of a dominant
frequency present in the signal [1]. Neural models of auditory processing
in the inner-hair cells using level-crossing signal representations have been
formulated [2],[3]. In Ghitza's model [2], sensory outputs from time interval
measurements between level crossings are aggregated across cochlear chan-
nels to produce an Ensemble Interval Histogram (EIH) spectral measure.
EIH has been experimentally shown to provide robust features for speech
recognition in the presence of noise. However it is computationally expensive
to implement signal processing schemes based on level-crossings on a digital
machine [4].

VLSI signal processing systems are often classified as analog, digital or
mixed-mode. With a recent emphasis on low power VLSI systems, there
has been discussion as to how much processing should be done in analog
and how much in digital to achieve optimum performance in terms of power
dissipation [5]. Missing in most of these discussions is the fact that it is the
design of the algorithm that gives an advantage to either analog or digital
implementation.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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In this paper, we present a low power mixed-mode circuit cell, designed
on the basis of analog VLSI neuromorphic principles [6],[7], for accurate and
fast on-line measurement of level crossing time intervals. The cell is suitable
for integration with analog VLSI cochlear implementations [8, 9, 10]. It pro-
duces a voltage proportional to the time interval between consecutive upward
crossings of the input signal with respect to a reference level, sampled at the
end of every interval. An array of nine such cells has been fabricated and

tested.

Signal 0-+C m Control pulse

Ref o- generator

SReset S/H. S •H

Vref I-Vut

s sample! c2
V~ia ]02pF Hold -

Time Interval =

Computation Block

Figure 1: Circuit cell block diagram

2 CIRCUIT DESCRIPTION

The basic functional elements of the circuit cell are shown in Figure 1. Essen-
tially, the cell integrates a constant supplied current Id onto capacitor C, over
the time interval between consecutive upward level crossings, and samples the
capacitor voltage onto the output at the end of the interval, while almost si-
multaneously resetting the capacitor voltage for integration in the next cycle.
Thus, at any time the output voltage (Vot) is a measure of the most recent
level crossing interval. A comparator serves to indicate the location in time
and the polarity of the level crossings. The most complicated part of the
circuitry is the self-timed control logic to ensure the capacitor voltage is reset
after the output is sampled and held. All this needs to occur in a very short
time at every upward level crossing. The time needed to sample and reset
the capacitor voltage will ultimately limit the resolution of time-to-voltage
conversion. The details of operation are outlined below.

2.1 The Comparator Circuit

The comparator circuit is shown in Figure 2(a). The comparator consists of a
standard two-stage differential CMOS amplifier, without frequency compen-
sation. While this circuit topology is typically used in above threshold MOS
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Figure 2: (a) Comparator Circuit, (b) Control pulse generator

operation, transistors M 1 and M7 are here biased in sub-threshold. Small
signal analysis of the comparator, using device sizing of Figure 2 and typi-
cal values for the Early voltage in a 2 ym process, yields a DC voltage gain
of the order of 3 x 10'. However, a large signal analysis reveals a strong
asymmetry in the transient behavior. A much larger output current results
from M 6 which is driven above threshold when the signal is high, than the
fixed sub-threshold current supplied by M 7 . This means that the rise time
of the comparator is orders of magnitude smaller than its fall time, which is
slew-rate limited. This asymmetry is used to create a refractory period in the
response of the comparator, during which no second positive transition can
be registered. This plays an equivalent role to refractory period in a neuron,
avoiding spurious transitions due to noise. The duration of this period can
approximately be written as

Trefract o Clod(VDD - Vss) (1)
2 1M7

where Cload is the parasitic load capacitance at the output of the comparator,
VDD and Vss are the supply voltages, and IM7 is the drain current in the
transistor M7. The value for the refractory period cannot exceed the least
time separation between consecutive positive transitions. For audio appli-
cations, the least time interval of interest is of the order of 25 Psec. With
an estimated parasitic load capacitance of 40 fF on the Cmp output node,
it would require the drain current of M 7 to be at least 8 nA. This value of
current corresponds to sub-threshold operation for a square MOS device in
2 pm technology.
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2.2 Self-timed Control Pulse Generator

The circuit for generating the sample-and-hold (S/Il) and reset pulses is
shown in Figure 2(b). A time delay element is realized using the transis-
tors M8 to -ll,. Transistors Is and Mll are biased in sub-threshold, and
can slow down the output voltage swing from a fraction of a microsecond to
several microseconds. Bias voltages BiasH and BiasLi independently control
the rise time and fall time respectively. The NAND gate is configured such
that it is active low only during the upward transition of the input COpp.
At that instant, a pulse is generated of width approximately equal to the
fall-time delay in the delay element.

As noted above, the comparator implementation shown in Figure 2(a) has
a very short rise-time but a fairly long fall time. The rise time of the delay
element is chosen to be longer than the comparator fall time, in order to
avoid a spurious pulse at the output of the NAND at the falling edge of the
comparator output. The fall time, which is controlled by BiasL1 at the gate
of M- sets the width of the S/H pulse.

The circuit for generating the reset pulse is essentially identical to that just
described for generating the S/H pulse, with the exception that the second
delay element is configured for no delay in the upward transition of the input.
This has been done to ensure that a discharge pulse is generated even for very
short duration sample-and-hold pulses. The bias voltage BiasL2 at the gate
of the transistor MA12 controls the width of the discharge pulse.

2.3 Sample-and-Hold

The sample-and-hold (S/H) circuit in Figure 1 is implemented in standard
form, using an input voltage buffer, a switch, a hold capacitor C2, and an out-
put voltage buffer. The dummy-compensated complementary switch is driven
by the S/H and S/H control signals. Presently, the buffers are implemented
as differential transconductance amplifiers with unity-gain feedback, and are
hence slew-rate limited. For a non-stationary input the output voltage not
only depends on the voltage on CQ when the S/H pulse arrives, but also on
the slew rate of the first buffer in the presence of the load C2. In case the
interval between level-crossings changes significantly from period to period,
this may be a limiting factor in the performance of the circuit. In particular,
the maximum change in output voltage between consecutive periods is given
by

A max 11Biasout = TS/H C2 (2)

where Ts/H is the duration of the sample-and-hold pulse, and 'Bias is the bias
current in the S/H transconductance buffer.

For a quasi-periodic input, the steady state output voltage 1/uot, relative
to the reset voltage V7ref, is given by the discharge current Id integrated on
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capacitor C, over the level crossing time interval AT. Ignoring the conduc-
tance of the current source Id and the finite width of the discharge pulse, V,,ut
is approximately given by

hI
Vout = Vref - AT + Voff (3)

C,

where Voff is the offset voltage of the sample-and-hold output circuit. In the
current design, Id is the drain current of a MOS transistor in sub-threshold.
The value of the current Id is controlled by the gate voltage VBias of that
transistor.

One useful characterization of the circuit is the maximum bandwidth
FB(in decades) for which the cell produces a useful output. The constraints
result from power supply limitations and the resolution of the measurement
equipment. Ignoring V,,ff in equation (3), one can write

AT = (Vref - Vot)Cl (4)
Id

Taking frequency as reciprocal of the period, and dividing (4) for the maxi-
mum and minimum values of V,,ut gives

l fmax Vref - V
Tmu(n

.FB = lOg L = log max[(Vref - Vom), VA] (5)

where the minimum and maximum output voltages VJmJ, and Vmj" are de-
termined by the the power supply and the range of operation for the S/il, and

Figure 3: Micro-graph of three cells on the chip. Cell dimensions are 120pmx
227pm in 2pm CMOS
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Figure 4: Output waveform for a frequency modulated input - The lower
waveform is the frequency modulated input, upper waveform (the straight line
and thin vertical lines) show the resetting and discharging of the capacitor,
and the triangular wave is the final output

VA is the resolution limit due to the noise in the circuit and the measurement
equipment.

3 EXPERIMENTAL RESULTS

An array of nine circuit cells has been fabricated through MOSIS. A micro-
graph of the chip, depicting 3 cells of dimension 120pm x 227pum each, fab-
ricated in N-well 2pm CMOS technology, is shown in Figure 3. Common
control signals are provided to all cells, except for the bias voltage VBias.

3 VBias
0.7V 0.6V 0.5V>

0.60

10 100 1000 104 0.5 0.55 0.6 0.65 0.7

Period (usec) VBias (V)

Figure 5: (a) Output voltage versus input signal period, at three different
discharge current bias settings. (b) Output sensitivity versus bias voltage
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Figure 6: Frequency-to-voltage characteristics of the transducer array over
the audio frequency range

Bias voltages are tapped from equally spaced points on a resistive polysilicon
wire which is used as a resistive voltage divider. Voltages at the two ends of
the polysilicon wire may be controlled externally, thus locally controlling the
discharge current Id in the individual cells.

3.1 Temporal Response

Figure 4 illustrates the response of a single cell when a frequency modulated
signal is applied to the input. In this example an input with minimum fre-
quency of 1kHz and a maximum frequency of about 4kHz is used, with a
triangular modulation at 5011z. It can be seen that the output voltage is
nearly triangular, with a value proportional to the input frequency.

3.2 Tuning Characteristics

From (3), the relationship between A\T and Vnias is expected to be linear,
proportional to the discharge current Id. Plots of the output voltage V0,ut
versus the period A~T of a periodic input signal are shown in Figure 5(a), for
three different values Of Vnias. As shown, the bias voltage setting allows to
scale the linear frequency versus output voltage response over a wide range
of frequencies. We define as the output sensitivity S as the change in output
voltage V0,,t in response to a unit change in period A~T. From (3), the quantity
S is given as Id/Cl, in the linear range of operation. The recorded output
sensitivity as a function of bias voltage Vnfia is shown in Figure 5(a). The
exponential relationship between the S and Vnias derives from the fact that
the in the sub-threshold region of operation, the saturation drain current of
a MOS transistor Id of a MOS transistor is exponential in the gate voltage
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3.3 As an Array of Processors

By applying a uniform linear voltage gradient across the polysilicon wire that
provides VBias, an exponential distribution in bias current aBias of the cells is
obtained. This allows each cell to be tuned to a particular range of frequencies
in the corresponding input signal, whereby the center frequencies of the cells
are spaced uniformly in the log frequency domain. The motivation is to
interface the array of level crossing cells directly with outputs from a cochlear
filter bank with matched center frequencies. As a proof of concept, a linear
gradient in VBias is constructed by tapping the bias voltages on equally spaced
points along a resistive polysilicon line. The maximum and the minimum
values of VBis, defining the corner frequencies, are applied at the ends of the
resistive line. A frequency sweep in the audio range is input to the whole
array. The resulting outputs are shown in Figure 6. The useful frequency
range of each cell is about a decade, suitable for use with cochlear filter
banks which typically have bandwidths less than an octave per channel.

3.4 Power Consumption

The total power consumption can be broadly divided into two separate com-
ponents. The first component is that which is fixed. It is due to the constant
bias currents in the comparator, the time-interval computation block, and
the sample-and-hold. The value for these bias currents is determined using
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the criterion that the circuit should function in the worst case scenario. In
our case we require that the circuits should continue to function properly for
input frequencies up to 40 kttz. The bias current in the S/H is set to allow
instantaneous changes in level-crossing-intervals to be recorded. The second
component is due to the switching in the control-pulse generator. Since the
amount of switching is proportional to the input frequency, this component is
directly proportional to the average input frequency. The experimental data
for power consumption is shown in Figure 7. For the speech input frequency
range (less than 8 kHz) the power consumption is less than 20PW. Note that
it is possible to further reduce the power consumption by reducing the power
supply voltage.

4 CONCLUSION
Power consumption and robustness are key issues in the development of
speech-processing applications for personal digital assistants. This compact
and low-power VLSI circuit implementation exploits the robustness [1] of zero-
crossing-based signal processing at a very low power cost. Sub-threshold expo-
nential characteristics of the MOS transistor and continuous operation make
arrays of cells particularly suitable to multi-resolution signal processing such
as in a mammalian cochlea. The power consumption of the circuit is small
due to two reasons. First, since the application involves audio-frequencies, is
has been possible to use sub-threshold CMOS circuits that consume very lit-
tle current. Second, due to the asynchronous self-timed design, unnecessary
switching has been eliminated.
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Abstract

This paper examines the application of the radial basis function
(RBF) network to the modelling of the Bayesian equaliser. In partic-
ular, we study the effects of delay order d on decision boundary and
attainable bit error rate (BER) performance. To determine the op-
timum delay parameter for minimum BER performance, a simple BER
estimator is proposed.
The implementation complexity of the RBF network grows exponen-
tially with respect to the number of input nodes. As such, the full
implementation of the RBF network to realise the Bayesian solution
may not be feasible. To reduce some of the implementation complex-
ity, we propose an algorithm to perform subset model selection. Our
results indicate that it is possible to reduce model size without signi-
ficant degradation in BER performance.
Indexing Term: Bayesian equaliser, neural networks, RBF network,
BER.

1 Introduction

It is well-known that the performance of neural network (NN) equaliser is
superior to the conventional linear equaliser for the digital communication
symbol-by-symbol equalisation problem [1-3]. The superiority of the NN
structure is due to its ability to model the optimum Bayesian decision bound-
ary better than the conventional linear systems. In many practical equal-
isation problems, the Bayesian decision boundary is often highly nonlinear,
and in some cases, not linearly separable. It is thus not surprising that NN
techniques, which are capable of modelling any nonlinear decision boundar-
ies, have become very popular in equalisation problems. This paper continues
this theme and investigates the application of the radial basis function (RBF)
network to realise the Bayesian equaliser.

The paper is organised as follows: In Sec. 2.1, we extend the work re-
ported in [1,2] to show the effects of delay order on the Bayesian equaliser's
decision boundary and BER performance. Our analysis show that the equal-
iser achieves different attainable BER performance when different delay order

0-7803-2739-X/95 $4.00 © 1995 IEEE
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is applied under the same signal to noise (SNR) operating condition. To de-
termine the optimum delay order, a simple BER estimate for the equaliser
is proposed in Sec. 3. The implementation complexity of the RBF equaliser
is also discussed, and an algorithm to select small-sized RBF models which
approximate the Bayesian solution is presented in Sec.4

2 Implementing the Bayesian equaliser

An established model of a digital communication channel subjected to inter-
symbol interference (ISI) for a multi-level pulse amplitude modulation (2-ary
PAM) scheme is described by the following equation [2,4]:

n,-l

r(k) = z: s(k - i)a(i) + e(k) (1)

i=O

where r(k) is the received signal at time k, s(k) is an independently identically
distributed (i.i.d) transmitted symbol with symbol constellation defined by
the set {±1}, a(i) are the channel impulse response coefficients with the
length of the impulse response na, and e(k) is the additive white Gaussian
noise e(k) of zero mean and variance o- [2,4]. The equaliser uses an array of
received signal

r(k) = [r(k),., r(k- m + 1)]T (2)

to estimate the transmitted symbol s(k - d), i.e. ý(k - d). The integers m
and d are known as the feedforward order and delay order respectively.

The transmitted symbols that affect the input vector r(k) is the transmit
sequence s(k) = [s(k), .- -, s(k - m - n, + 2]T. There are N, 2- +'--
possible combinations of these input sequences, i.e. {sj}, 1 _< j N, [2]. In
the absence of noise, there are N, corresponding received sequences Cd =
{ cj }, 1 < j < N,, which are also referred to as channel states. The subscript
d in Cd denotes the delay order used. The values of the channel states are
defined by the following equation,

cj =F[sj] I_< jN, (3)

where the matrix F C Rmx(m+ný-1) is

a(0) a(1) ... a(na--1) 0 .. . .. 0

0 a(0) a(1) ... a(na- 1) 0 .. 0

0 ... ... ... a (0) a(l) ... a(na -- 1)

(4)
When noise is present, the received vector r(k) has a Gaussian distribution
with expected values corresponding to the respective cj.

The set of channel states {cj}, 1 < j < N, can be partitioned according
to the value of s(k - d), i.e., channel states associated with s(k - d) = +1
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belong to the class C(+), and channel states associated with s(k - d) = -1

belong to the class C(-). The response of the Bayesian equaliser prior to the
slicer is [2],

f(r(k)) = Pi(2ror°')-,m2 exp(-Ilr(k) - ciII2/2o')
Ci EC(+

- pj(27,-)-,/2 exp(-Ijr(k)- Cj 12/2 U) (5)
cjEC(-)

where pi and pj are the a priori probabilities of occurrence for the respective
channel states. In the case of i.i.d transmitted symbols, pi Pj = 1/N,. The
output of the Bayesian equaliser .(k - d) is sgn(f(r(k)), where sgn(.) is the
signum function.

From Eq. 5, it is obvious that the structure of the RBF network is identical
to the Bayesian equaliser [2], and that the RBF network realises precisely the
Bayesian solution when the weights, centres and the nonlinearity of hidden
units are set accordingly.

2.1 Effects of delay order on decision boundaries

The set {r(k)lf(r(k)) = 0} defines the Bayesian decision boundary and is
dependent on the channel state values and the delay order parameter [1,2].
The channel states are determined by the channel impulse response and the
equaliser feedforward order. The channel states however do not uniquely
define the decision boundary. Given a set of channel states, the decision
boundary can be changed by using different delay orders.

As an example, the Bayesian decision boundaries realised by a RBF equal-
iser with feedforward order m = 2 for channel H(z) = 0.5 + 1.0z- 1 is ex-
amined. Fig la lists all the 8 possible combinations of the transmitted signal
sequence s(k) and the corresponding channel states ci. Fig. lb depicts the
corresponding decision boundaries for the different delay orders. Note the
dramatic change in the shape of the decision boundaries for different delay
orders.

The use of different delay orders also results in different limits of BER per-
formance. To determine the optimum delay order, a computationally simple
method to estimate the BER of the Bayesian equaliser is presented in Sec. 3.2.

3 Probability of mis-classification

This section presents the analysis of probability of mis-classification of the
Bayesian equaliser.
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S/No Transmitted symbols Channel Stateea orderode1
:Delay order= =2

s (k) ci 2

[as(k) s(k-1) s(k-2) [ r(k) r(k-1) I Channel State @

1 1 1 1 1.5 1.5 3 --- -------------

2 1 1 -1 1.5 -0.5 0

4 1 -1 -1 -0.5 0.5 . 2

4 1 -1 1 -0.5 -. 5 -t

5 -1 1 1 0.5 1.5

6 -1 1 -1 0.5 -0.5 -2

7 -! -1 1 -1.5 0.5 Delay order \

8 -1 -1 -1 -1.5 -1.5 -3 -3 -2\0 1 2 3

r (k)

Fig (a) State Table Fig (b) Decision boundaries

Figure 1: (a) Input and desired channel states for channel H(z),
(b) Bayesian decision boundaries for channel H(z).

3.1 Evaluating the probability of error

We define Z+ C R' to be the region of r(k) classified as +1 and Z- C R'
to be the region classified as -1. The probability of making a wrong decision
P, is

PR Z Pi Jrf frlci(r)dr+ > pj Pij frlcj(r)dr (6)

where fritc (r) is the probability density function (pdf) of the noisy received
vector r conditioned on the received channel state being cl,

frleC, (r) = (2 7ro-,)- /exp(-1jr - cz1/(2, )) (7)

Because the symbol constellation is symmetric, equation (6) can be reduced
to

P, = 2 1 Pi - frIc,(r)dr (8)
2CEC+ rEz-

3.2 Estimating the probability of error

The evaluation of BER using Eq. 8 involves evaluating m-dimensional integ-
rals over the error region Z-. As a closed-form solution for the expression
does not exist, one must resort to numerical methods. This option however
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is un-attractive for large m. As our requirement to find BER performance
is only one of comparing relative performance for equalisers using different
delay orders, a simple approximation may be used to estimate the BER. The
probability of mis-classifications, P6, can be expressed as

1 N,

Pe = N-- Pe(ci) (9)

where Pe(ci) is the probability of mis-classification conditioned on the noise-
free channel state being ci. It can be shown that in the case when SNR -* 0,
Pe(ci) can be reduced to the minimum distance bound [5], i.e.,

Pe(cj) = h =e) (27ro- 1 /2exp(-x2/(2°'))dx (10)

where JK I is the absolute minimum Euclidean distance of cj to the decision
boundary.

Although Eq. 10 is only valid for very high SNR, it can be applied with
Eq. 9 to evaluate a rough estimate of the BER performance. Our simula-
tion results however indicate that the proposed estimator gives good BER
estimates even for low SNRs.

3.3 BER estimate : Some simulation results

Simulations were conducted to compare the BER results obtained using Eqs. 9
and 10 with those obtained by the Monte Carlo (MC) simulations. The fol-
lowing channels which have the same magnitude but different phase response
were used,

HI(z) = 0.8745 + 0.4372z- 1 - 0.2098z- 2  (11)

H2(z) = 0.2620 - 0.6647z-1 - 0.2623Z- 2  (12)

For the experiment, the equaliser's feedforward order was chosen to be 4 with
the transmit symbol alphabet {±1}. Fig 2 compares the BER estimates of
Eqs. 9 and 10 with those of MC simulations for the two channels using differ-
ent delay orders. The results show that the proposed BER estimate is very
accurate. To illustrate the strong dependence of the equaliser's performance
with respect to the delay order, we plot the performance of the equaliser using
the delay parameter as the horizontal axis in Fig 3.

4 Selecting subset RBF model

The implementation of the full RBF solution requires the use of all N, channel
states. In some cases, equivalent Bayesian solution may be realised by using
a subset of the full model. For example, the decision boundaries of delay
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Fig (a) SNR Fig (b) SNR

Figure 2: Estimated and MC simulations of BER vs SNR for Hl(z) (Fig a)
and H2(z) (Fig b).

order 1 and 2 (Fig lb) can be realised by a RBF model with centres ci from
{c3 , C4, cS, C} (Fig. 4a,b).

In many cases, we have observed that it is possible to find small sub-
set RBF model to approximate the full model's solution when the decision
boundary is linearly separable. The task is however much more difficult when
the decision boundary is nonlinearly separable.

This section examines subset model selection algorithms to reduce im-
plementation complexity of the RBF equaliser. The objective is to find a
smaller-sized, in terms of number of centres, RBF model to realise or to ap-
proximate the same Bayesian solution as the full model. To understand how
centres affect boundary, we analyse the effects of centre positions on decision
boundary when o-, -- 0. Defining the points on the boundary as r 0 , i.e.
{rolf(ro) = 0}, Eq. 5 becomes

S pi(27ro-,)-m/ 2 exp(-IIro - c+fl 2/2o-)=
CEC(+)

5 pj(27-2e)-,/2 exp(-Iiro - cJ112/202) (13)
CjEC)(-

When o-, -• 0, the sum on the L.h.s. of Eq. 13 becomes dominated by the
closest centres to r 0 , i.e.

U = min {flro - ckII} (14)
Ck e CC(+)

This is because the contribution of centres ck ý U+ converges much more
quickly to zero when o> -, 0 than centres belonging to U+. Similarly, the sum
on the r.h.s of Eq. 13 becomes dominated by the closest centres, U-. This
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Channel HI(z) Channel H2(z)

-1 - estimated SNRm•MC SNR estim.mate BER

Fig (a) Delay order Fig (1) Delay order

Figure 3: Estimated and MC simulations BER vs delay order for SNR 12dB,
14dB and 16dB for H1(z) (Fig a) and H2(z) (Fig b).

implies that the asymptotic decision boundaries are hyper-planes between
pairs of U+, U- and that the set of all U+, U- defines the asymptotic decision
boundaries. The following algorithm may be employed to find the set of all
U+, U-. Algorithm 1 : Finding U+, U-

For c1 E c+
For Fi E D-

r = c, + (C-C-i)

14dBand16[ forH(r ) -0 ia and 12z Fi )

if =a tminci cb(+){Inr - ckh} b (15)

ci+ UU+,c--*U-

next cj,
next ci.

Algorithm 1 was tested to find subset models from the full RBF model
(Sec. 2.1) used on channel H(z) =0.5 + 1.0z-1 . As expected, when delay
order 0 was used, all the centres, {Ci, . .. , cs} were picked to form the subset
model (Fig. lb). For the case of using delay order 1, the selected subset
model consisted of centres {c 3 , c4 , c5 , c6 } These results can be easily verified
by visual inspection of the boundary formation as illustrated in Figs. 4a and

lb.
Although algorithm 1 works, the selection process is not optimum in the

sense that redundant centres may be included to form the subset model. To
illustrate, consider the selected subset model when delay order 2 was used.
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Figure 4: Realisation of decision boundary using subset RBF model.
Decision boundary for (Fig a) delay d =1, (Fig b) delay d =2.

By visual inspection of Figs. 4b and 1b, it is clear tbat the subset model
with centres f{C 3 , c4 , C5 , C6 } is sufficient to realise the Bayesian boundary. Al-
gorithim 1, however, picked all tbe centres to form tbe subset model. Tbe
reason for including centres f{C 1 , C2 } and {C7 , C8} is tbat these two pairs of
centres satisfy Eq. 15 in algorithm 1 and tbus also define the asymptotic de-
cision boundary. Tbey are bowever unnecessary because the decision bound-
ary formed using centres {c3 , C4 } and {c 5 , c6 l are tbe same.

To minimise the, inclusion of redundant centres, an additional condition
is introduced in Eq. 15 to verify if the new centres under consideration affect
decision boundary. If the decision boundary changes with the inclusion of
the new centres, they will be accepted, otherwise ignored. By adding this
condition, some redundant centres will not be included in the selected subset
model. The algorithm for the improved version is as follows:

Algorithm 2 : Finding U+, U-

r i+ ( Ci 2c.)

f (r) =0 and1
if[c ~cE~1r - Ckjj} andJ

ci -U+, cj --+U

IsRBF model formed using U+, U- as centres.
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4.1 Subset model selection : some simulation results

Simulations were conducted to select subset models from the full model used

on channels H1(z) and H2(z). The feed forward order used was m = 4,

resulting in a full model with N, = 2'+'-- = 64 centres. Using SNR

condition at 16dB, simulations were conducted to evaluate the performance

of the subset RBF, full RBF and the linear Wiener equalisers for the two

channels. The results are tabulated in Table la and 1b; The first column of

each table indicates the delay order parameter, the second column shows the

size of the subset model used while the third, fourth and fifth columns list the

BER performance of the respective equalisers and the last column indicates

if the decision boundary is linearly or not-linearly separable.

Our results indicate that the full RBF models' BER performance, for cases

when the decision boundary is linearly separable, are normally better than

those when the decision boundary is not linearly separable.. This is not sur-

prising since decision boundaries which are not linearly separable tend to be

much more complicated and have more centres with different decision outputs

near to each other. It was also observed that smaller-sized RBF subset mod-

els can be found for the case when the boundary is linearly separable, and

their performance not significantly poorer than the full model's performance.

Subset Subset Full-model Linear-Eq Decision Subset Subset Full-model Linear-Eq Decision
Delay Delay

Size BER BER BER Boundary Size BER BER BER Boundary

0 56 -4.09 -4.09 -3.44 Linear Sep. 0 56 -0.80 -1.30 -0.37 Not-Linear Sep.

1 57 -4.14 -4.14 -3.07 LinearSep. 1 46 -2.99 -2.99 -1.61 LinearSep.

2 32 -4.11 -4.12 -2.36 Linear Sep. 2 38 -3.38 -3.38 -2.67 Linear Sep.

3 32 -4.11 -4.12 -1.84 LinearSep. 3 56 -3.43 -3.43 -1.94 LinearSep.

4 48 -1.91 -1.91 -0.59 Not-LinearSep. 4 55 -3.32 -3.32 -1.16 Not-LinearSep.

5 64 -0.97 -0.97 -0.37 Not-Linear Sep. 5 54 -3.41 -3.41 -0.80 Not-Linear Sep.

Table a: Channel HI(z) Table b: Channel H2(z)

Table 1: Comparing the performance of the full-size (64 centres) RBF equal-

iser, subset RBF equaliser and the Wiener equaliser for Channel

H1(z) (Table la) and Channel H2(z) (Table lb) at SNR=16db.
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5 Conclusions

This paper discusses the implementation of the RBF equaliser to realise the
Bayesian solution. In particular, the effects of the delay order parameter on
decision boundaries and BER performance is highlighted. We have showed
that the attainable BER performance depends strongly on the delay order
parameter and can be significantly different for various values of the delay
order. To determine the optimum operating delay order parameter, a simple
BER estimator for the RBF equaliser is proposed.

The implementation complexity of the RBF equaliser to realise the Bayesian
solution is also discussed. To reduce some of the implementation complexity,
we have introduced an algorithm to select subset model from the full RBF
implementation. Our results indicate that that good subset models with no
significant degradation in BER performance may be found.
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ABSTRACT

The model of finite mixtures and the EM learning algorithm
have been applied to the task of channel equalization in commu-
nication problems for the channels that may vary its properties
between a number of different modes. Computer experiments have
also been given to show that the proposed approach work well with
a promising potential for applications.

1. INTRODUCTION

The finite mixture model is an important parametric model in the fam-
ily of unsupervised learning models. It is popular in statistics and pattern
recognition [3]. The model is used for a variety of problems, including cluster-
ing analysis, estimation of densities of multiple populations, and unsupervised
classifier design. The finite mixture model and the EM algorithm have gained
an increasing attention in neural network literature[1][4-8][11-14].

In this paper, we consider the application of the finite mixture model
and its modification to the task of channel equalization in communication
problems for the channels that may vary its properties between a number of
different modes.

2. CHANNEL EQUALIZATION

In communication channels, dispersion causes interference between suc-
cessive samples and greatly complicates reliable transmission and reception of
signals. Presently, the problem is usually solved by a technique called Adap-
tive Channel Equalization. An adaptive equalizer is installed in the receiving
end. It is usually an adaptive transversal filter (LMS filter) which forms
an inverse transfer function for the channel within the channel passband so
that the cascade transfer function is essentially fiat (constant) in magnitude
and is essentially linear in phase. This adaptive equalizer works quite well,
when the transfer function of the channel is not too complicated and can
be approximately regarded as a linear transversal filter. However, in some
communication tasks, the transfer function of the channel is actually much
complicated. For example, in radio communication and mobile phones, the
transfer characteristics of the channel will vary from time to time and place
to place. It is often quite difficult for a simple LMS filter to cope with these
complicated cases. In this section, we propose some techniques for tackling

'This research was supported by the HK RGC Earmarked Grant CUHK250/94E.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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Figure 1: A complicated communication channel and the proposed
multi-mode equalizer.

this problem based on the finite mixture model and the EM algorithm.
We assume that the channel varies its transfer characteristics between a

number of different modes. More precisely, as shown in Fig.1, we imagine
that there is a synchronous random switch in both the sending end and the
receiving end. During the communication, the switch randomly chooses a
channel mode j with a prior probability ac and then keeps using this channel
mode for a random period T. During the channel mode j is under using, we
have the receiving signal given by

s(0 = Hj((t), .. , b (t - Pj + 1), Oj) + M(t). (1)

where b(l) is the signal at the sending end, and IH1 (.) is the transfer finction
of the channel in mode-j. Particularly, we consider the linear transversal filter
as follows

P3

s(t) cj,o + j cJ,Tb(t - T- + 1) + F(t),

thus Oj = [cjO Cj,', Cj,pj]. (2)

In eq.(1), ( 1), = 1,2, -, are i.i.d. noise samples with mean Es(t) = 0
and variance VaoE(t) o- We consider the case that E(1) is from Gaussian
distribution although the results are easily to be extended to any memnber of
the exponential family distributions. Thus, we have

P(e(t)O1j, 1j) = P(s(t),b(i), .- ,b(t -pj + 1)O1j, Tj)
1 .p{ [s(t) - Hj(b(t), .. , b(t - pj + 1), 2)]j} (3)
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Since the switch chooses channel mode j with probability acj, and the
receiving signal s(t) and its corresponding noise -(t) can be described by the
finite mixture model

K K
P (6(t) 10) E acj P (E(t) IOj,o0-j), caj > O, 1: 'cej = 1. (4)

j=l j=
1

with P(-(t)O1j, oj) being given by eq.(3). Since -(t),t = 1,2,..-, are i.i.d.
samples, the parameters e {{10j1}, {-j}1', {cajI') is estimated by Maxi-
mizing the Likelihood(ML):

N
L = E In P (,F(t), 0). (5)

t=1

We use the popular iterative EM algorithm to do this ML. Following
Dempster, Lair& Rubin [2] and Jordan & Xu [7] and after some mathematical
work, we get

The E-step: Compute

hýk)(E(t)) p (j (t)) = p (E(t) 1 k " J)

N K

Q(oIo(k)) h ,l(t),I (6)
t=1 j=i

The M-step: Update 1(k) into 0 (k+1) by maximing Q(eIO(k)).
That is, from =0, 2-- 0, 19- = 0 and K= aj 1, we obtainaaj 9005 aaj 1

C(k + 1) I k)- hv 3 (E())
t=1

0 (k+1) (R(k)>1jC(k),

N
C(k) =)(E(t)),(t)B,,

t=1

B• = [1, b(t),...,b(i - pj + 1)]T,
N

Rk I: Eh 3>(E(t)) Bpj BT,)

t=1

( 0"2)(k+1) N N k)

x [s(t) - Hj(b(t), ., b(t - pj + 1), Oj)]2 (7)

where the updating formula for Ok+1) holds only when Hj(.) is linear as
given by eq.(2). When Hi(.) is nonlinear, we can generalize it by th" EIRLS
method[7].
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However, our main purpose here is not the estimation of these channel
parameters. What we want is to get an estimate b(t) such that it is as close as
possible to the original b(t). As shown in Fig.1, we try to design an equalizer
which has also k modes. The change between the modes is controlled also by
a random switch which is synchronous to the switch that selects between the
channel modes.

During the equalizer mode j is chosen, we have the signal b(t) given by

b (t) = Ej (s (t), . . . , s(t - pj + 1), Oj). (8)

where EN(.) is the transfer function of the equalizer in mode-j. Particularly,
we consider the linear transversal filter as follows

PJ

b(t) = djo + dj,,s(t - -+ 1),

thus Oj = [dj,o, dj 1,'", dj,pJ. (9)

In the sequel, we propose two designs for such a equalizer.
The first design is a technique we called Weighted Least Squares. It

consists of two stages. In the first stage, we use a training set of samples
{s(t), b(t), t = 1,..., NI to get the transfer function Hj of each channel mode
by eqs.(6) & (7), and then put the obtained parameters of the channel modes
into eq.(3). In the second stage, we design each equalizer mode by solving Oj
that minimizes the weighted least squares error

N N

Shj(c(t))(b(t) - 6(t)) 2 = hj(E(t))[b(t) - Ej(s(t),..., s(t -Pj + 1), Oj)] 2.
t=1 t=1

(10)
where hj(e(t)) is computed by eq.(6) and eq.(3). Particularly, when Ej is
linear as given by eq.(9), we can get

Oj = R-'lC,ý ,

N

Cej = - hj((t))b(t)Sp,
t=1

S'pj = [1,s(t),..., s(t - Pj +)]T,
NEj = hj (_(t)) SpjST 11

t=1

W- can also modify eq.(11) into an adaptive algorithm as follows:

(• ( t ~ ) : ] (t+ l)c (t+ l)
ej ej

C(t+1) -=_ + f+jhj(g(t))b(t)sj,eJ e 6
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fk(t+1) - -( 3 Pje P- 16iR~) (12)ej ~ejT e
TAfhj(E(t)) + , e1 &t)p 3

where 0 < A1 < 1 is a forgetting factor. Rej is the inverted Rej defined in
eq.(11). !Rej(0) is initialized by an arbitrary positive definite matrix. Fur-
thermore, we can even use Widrow's simple LMS[10] to replace eq.(1 2 ). That
is, we update with a learning stepsize 0 < A < 1.

.tl (t) - + Ah j (((t))(b(t) - b(t))Spj, (13)

After training, we use the obtained parameters to computer the switching
signal hj(e(t)) for every received signal sample point s(t) by

SajP(E(t) IO0 , 0 ) (14)

with which the output of the equalizer mode j* as 6(t) such that

hi.(c(t)) = maxhj ((t)), (15)
3

we call this manner the hard switching. An alternative is the soft switching
as follows

K

b(t) = Zhj (-(t))Ej(s(t), . ,s(t - pj + 1), Oj). (16)
j=1

The second design is an one package approach. We do not solve the
transfer functions of each channel mode by eq.(6) and eq.(7). Instead, during
the switch chooses the equalizer mode j, we assume that

b(t) - b (t) = b(t) - Ej(s(t), .-. . , s(t - pj + 1), 0j) = -(t)

for t = 1, 2, • •., are i.i.d. Gaussian samples with mean Ee(t) = 0 and variance
Vare(t) = or. That is, we have

1 exp{- [b(t) - Ej(s(t), ... ,s(t - pj +

(17)
By considering all the modes, we see that E(t) can again be described by the
finite mixture model eq.(4), but now with P(r(t)iOj,o-j) being replaced by
P(c(t)I1j, o-j) given by eq.(17). Moreover, eq.(5) applies too. Therefore, the
learning of the parameters of each equalizer mode can be implemented by an
EM algorithm with

The E-step: Given by eq.(6) again.
The M-step: Be a slight modification of eq.(7), given by

ack+l) 1 h t

t=1
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(k+1) = ())

N

C(k) = E -ý5 (t))b(t)Sp

Sj = [1, s s( - ,j + )]T,
N

(kj) = EZh k) (t)) S,,ST
t=l

(C2)(k+l) - 1 N (.
dr'i} EN:tl hj)(E(t•)) E k(())t=1

x [b(t)-Ej(s(t),..,s(t•-Pj+ 1),i)]2, (18)

where the updating formula for 0Yk+ ) holds only when Ej (.) is linear as givenj-
by eq.(9). When Hi(.) is nonlinear, we can use the EIRLS method[7].

One adaptive version of eq.(18) is given as follows

K
() (W)tt)t (t

i=1

0(t+1) +R(t+h)c(t+l)
.' 'j ej

ej+1• Q ct) + A j (,F i(t)) b (i)S
sj [1, s(t), s(t - Pi + ')IT,

fŽ(t) NS ST R (t)

e3 - - + S2  PNS
Afhj(F(t)) P j P

At /1(t + 1), c,(t+1) = Ata(.t) + Af (I - A~~Ei)
Shj (0) = 0, S5j (t + 1) =:S (i) + hj (E(t)),

Ah, = 5/,,j(t)/j(t + 1),
(J)('+±) = A,(j 2 )(') + Af(I- A-,)hj(6(1)x

x [b(t) - Ei(s(t), .. , s(t - Pj + 1), 0j)]2. (19)

where Rcj is the inverted Rej defined in eq.(18). Rej(O) is initialized by an
arbitrary positive definite matrix.

We can get the estimated bt() by either the hard switching eq.(15) or the
soft switching eq.(16) proposed in the first design.

Before closing this section, we should point out that for all the studies in
this section, we assume that a set of training samples for b(t), t = 1, .,N
are available. In practice, this is possible by either sending a known signal se-
quence periodically or by using some specific estimation measure. We will not
discuss this issue in detail. The reader is referred to Widrow & Stearns[10].

3. COMPUTER EXPERIMENTS

We use the signal shown in Fig. (2a) (top) as the sending signal b(t), which

passes throughi a two-mode channel and becomes a output signal s(t) in the
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receiving end, as shown in Fig.(2a) (bottom), with

J' b(t) - 1.98b(t - 1) + 0.9b(t - 2), for channel mode-1

sYt) =I~ b(t) + 1.6b(t - 1) + 0.9b(t - 2), for channel mode-2 (20)

Both the two channel modes happen in equal probability. The lasting period
T of each mode is a uniform random variable from the interval [30,130]. In
comparison with the sending signal and receiving signal given in Fig.(2a).
We can observe the serious distortions in the receiving signal s(t) due to the
filtering of the channel.

We design a two-mode channel equalizer as follows:

ClJls(t) + Cl,2s(t - 1) + C1,3s(t - 2), for equalizer mode-1
c2 ,1s(t) + c2 ,2s(t - 1) + C2,3S(t - 2), for equalizer mode-2

(21)
We use the batch way EM algorithm eq.(18) to train the two-mode chan-

nel equalizer. The learning converges about only 8 iterations. The obtained
parameters for eq.(21) are

[c1,I, c1 ,2, Cl3] =[-17.7150, 5.5391,2.4743]
[c2,1, c 2 ,2 , c2,3] [0.3506, -0.0008, -0.0677].

Fig.(2b) is the obtained switch for control the selection of the two equal-
izer modes. We see that the controlling process for the equalizer mode switch
obtained by our approach is almost exactly the same as the unknown con-
trolling process of the channel mode switch. This synchronous switch makes
the two-mode equalizer recover the sending signal very nicely. Fig.(3a) gives

a comparison of the recovered signal b(t) with the sending signal b(t). We can
see that the recovery is very good except some very small distortions.

To get some further understanding on the advantage of the proposed chan-
nel equalizer. We also use the conventional adaptive LMS channel equalizer
on the same problem. The equalizer is also of order-3:

6(t) = cls(t) + c2 s(t - 1) + c3s(t - 2), (22)

Fig.(2d) are the results of the LMS channel equalizer. The LMS learning
converges after about 5000 steps to [Cl,C 2 , c3 = [0.1111, 0.3532, -0.1892].

However, it follows from Fig.(2d) that the recovered signal t(t) by the LMS
channel equalizer is very poor, refer to Fig.(3b) for a comparison.

4. CONCLUSION

Based on the model of finite mixtures and the EM learning algorithm,
we have proposed new approach for channel equalization. In comparison
with the standard adaptive LMS channel equalizer, The experiments have
shown a significant improvement obtained by the proposed approach for the
complicated communication channel that varies between different modes.
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Figure 2: The experiments for channel equalization. (a) The send-
ing signal b(t) (top) and the receiving signal s(t) (bottom). This b(t)
passes through a channel with two modes that randomly engage in.
After filtered by this channel, the receiving signal s(t) becomes con-
siderably distorted. (b) The original switch control for the selection
of the two equalizer modes (top), and the estimated switch control for
the selection of the two equalizer modes (bottom).
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Figure 3: The experiments for channel equalization. (c) The esti-
mated signal b(t) (bottom) after channel equalization by our proposed
approach in comparison with the sending signal b(t) (top). (d) The
estimated signal b(t) (bottom) after the channel equalization by the
standard adaptive LMS approach in comparison with the sending sig-
nal b(t) (top).
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Abstract - In this paper we compare the Hopfield Neural
Network (HNN) based CDMA Multiuser Detection introduced
in [1, 2] to the Optimal Multiuser Detector (OMD) [3] and the
suboptimal Multistage Detector (MSD) [4]. It is shown that
the HNN receiver is a powerful generalization of the MSD.
Moreover, it is shown that by fine tuning the parameters of the
HNN it is possible to achieve BER performance that exceeds
that of the MSD and gets very close to the optimal.

1. Introduction

Spread Spectrum Code-Division-Multiple-Access (CDMA) is an emerging
standard for high-bandwidth wireless communications. With the CDMA
technique a number of active simultaneously transmitting users share a
Gaussian channel by modulating different signalure waveforms. At a re-
ceiver end, the incoming signal is the superposition of alltransmitted signals
and Gaussian channel noise. In many cases (e.g. hubs, satellite networks) a
cenlralized receiver is required to resolve all active users sharing the chan-
nel. The conventional mulhi-user detector for this case is a generalization
of the single-user detector, i.e. it consists of a bank of filters, matched to
the signature waveforms of each individual transmitter, followed by a set
of thresholding devices. The major inherent limitation of the conventional
multi-user detector is the so called near-far problem; i.e. when the power
contributions of the individual transmitters to the overall received signal
are very dissimilar (e.g. some users are stronger than others or distant)
the Bit-Error-Rate (BER) performance at the receiver degrades severely.
To overcome this limitation a number of approaches have been proposed.
Power-control, in which the transmitters are adjusting their power so that
at the receiver-end their contributions are approximately equal, is the one
most frequently used. However, when more than one receivers are present

'This work is partially supported by a grant from the Advanced Research Project
Agency of the Depatment of Defense, under contract MDA-972-93-1-0023. E-mail:
elias~cdsp.neu.edu, Web: http://www.cdsp.neu.edu/info/manolakos.html

0-7803-2739-X/95 $4.00 © 1995 IEEE
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(as in the case of a wireless network) power-control is difficult to implement
and alternative methods have to be found.

It has been proven by Verdu et al. [3] that the problem of Optimal
Multi-user Defection can be formulated as a quadratic integer optimiza-
tion problem that is however NP-hard. Many suboptimal solutions with
good near-far resistance properties have therefore been proposed, including
the decorrelaling detector and the Multislage detector [4]. Recently, the
interest in neural-network based solutions to the Optimal Multiuser CDMA
detection problem has grown considerably [1, 2, 5, 6, 7]. In [6] it has been
shown that multi-layer perceptrons can approximate more accurately than
other signal processing schemes the decision region of the optimal detector.
Furthermore, with the recent advances in analog VLSI technology, practical
analog neural network based receivers may soon become available and de-
liver demodulation times per symbol that are much smaller than those of
today's digital microprocessor based implementations.

In this paper we show that the recently proposed by the authors [1, 2,
5, 7] Hopfield recurrent Neural Network (HNN) based multi-user detector
is indeed a powerful generalization of a well known and extensively studied
Multistage detector (MSD). We show that an infinite number of stages MSD
is functionally equivalent to a particular instance of an HNN. Furthermore
we show that using the additional design flexibility that the HNN approach
offers leads to better BER performance. Taking into account that the HNN
detector may be complemented by powerful signal pre-processing stages [2]
that can reduce the network's size and computational cost per bit demod-
ulation and the BER, we believe that recurrent neural network structures
may provide a new framework for the design of high speed and performance
CDMA multiuser receivers.

2. Hopfield Neural Networks for CDMA Multiuser
Detection

Assume that K active transmitters share the same Gaussian channel at a
given time instance. A signature waveform sk(t), time limited in the interval
t C [0, T], is assigned to each transmitter. Let us denote the ith information

bit of the k h user as b(i) E {+1, -1}. In a general CDMA system, the
signal at a receiver is the superposition of K transmitted signals and additive
channel noise:

P K

r(t) b k(b)s,(t-iT-Tk)+n(t), tC (1)
i=-P k=1

In (1) 7k E [0, T) denote the relative time delays between the users, and
2P + 1 the packet size. In case that the stations cooperate to maintain

synchronism, it holds that 7-k = 0, k = 1, ... , K. As we mentioned in the
previous section, the Conventional Detector (CD) consists of a bank of filters

matched to the signature waveforms of each user, and a simple thresholding
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device that produces an estimate 0) for the ith information bit of the kth

user according to the sign of the ith output of the kth matched filter:

y(i) f(i+l)T- rk(t - iT - 7k)dt

CD (2)

where y(i) = [(Yi) ( .i)...

On the other hand, the Optimal Multiuser Detector(OMD) produces an
estimate for the information vector transmitted at the discrete time instant
i, based on the maximization of the logarithm of the likelihood function. In
the synchronous CDMA transmission case it holds [3]:

b()D = arg max {2y(i)Tb - bTHb} (3)OMD bE{+1, - 1 }K

where H E l/"xK is the matrix of signal waveform cross-correlations.
Because of the exponential growth of the computational complexity of

the OMD with the number of active users, suboptimal multi-user detection
schemes have been proposed. The Multistage Detector (MSD) introduced
by Varanasi and Aazhang [4] is such a scheme having a number of attractive
properties including relatively low computational complexity, near-optimal
BER performance, and insensitivity to near-far problems. The MSD consists
of a collection of cascaded stages m= 1, 2,... each producing an estimate
b(')MsD(m) as follows

b(') - (H - E)b D(m)(4)
MSDM + Sign (Y -- (4)

where E is a diagonal matrix with elements eii= fT s~dt (signal energies).
The output of the first stage (m = 1) is initialized to the estimate of the
CD. In the next section we will show that an MSD with an infinite number of
stages may converges to a local minimum of the OMD objective function.

Hopfield Neural Networks (HNN) [8], are single layer networks with out-
put feedback consisting of simple processors (neurons) that can collectively
provide good solutions to difficult optimization problems. A connection
between two processors in established through a conductance Tij which
transforms the voltage outputs of neuron j to a current input for neuron
i. Externally supplied bias currents 1i are also present in every processor
i. Overall, neuron i receives a weighted sum of the activations all other
neurons in the network, and updates its activation according to the rule:

Vi = g(Ui) = g(ETijV3 + 1) (5)

where g(Ui) can be either a binary or antipodal thresholding function. For
the case of the McCulloch-Pitts neurons Vi = g(Ui) = sign(Ui) or any
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monotonically increasing nonlinear function. One example of such a nonlin-
ear function often used in simulations is the sigmoid function:

V = g(u ) = sigm(a ui) = 1 (6)
1 + eU

where a is a positive constant that controls the slope of the nonlinearity. In
particular, when o, - oo, then g(Ui) -- sign(U2 ).

It has been shown by Hopfield that in the case of symmetric connections
(Tij = 7ji), the equations of motion for the activation of the neurons of
a HNN always lead to convergence to a slable slate, in which the output
voltages of all the neurons remain constant. Also, when the diagonal ele-
ments (T/i) are zero and the width of the amplifier gain curve is narrow, (i.e.
the nonlinear activation function g(') approaches the antipodal thresholding
function), the stable states of a network with N neuron units are the local
minima of the quantity (energy function):

K K KE 2v T, -ýV ý1 (7)
i=1 j=1 i=1

The equations of motion for the ith neuron may be described in terms of
the energy function (7) as follows:

dU_ aE U +± T [.+(
dt 9 Vi T - T

4ij

where 7 = RC is the time constant of the RC circuit connected to neuron
i. With the exception of pathological cases, when the matrix T is negative
or positive definite, networks with vanishing diagonal elements have minima
only at the corners of the K-dimensional hypercube [-1 + 1 ]K.

It is apparent from Eqn. (3) that the OMD objective function has a very
similar form with an HNN energy function. The cross-correlation matrix H is

symmetric since hki = f[ Sk(t)sI(t)dt = fo sl(t)sk(t)dt = hik. Moreover,
Eqn. (3) can be rewritten as:

b(OMD = argmin bT{+l, K{-Y() b + ½bTHb}

argminb{f+1  _}K{-y(i) 
T b + 1bT(H - E)b} (9)

since bTEb is always a positive number. The matrix -(H-E) is symmetric,

and has zero diagonal elements since hii L fs 2 dt - e,-. Therefore, the
OMD objective function can be directly translated into the energy function
of a Hopfield Neural Network (7)) with weight matrix T = -(H - E) and
biases I - y(i).

The obvious advantage of the HNN detector over other suboptimal re-
ceivers lies in its fast convergence. The main part of the receiver can be
implemented by relatively simple analog VLSI hardware with convergence
times in the order of a few nanoseconds, while other detectors implemented
using digital microprocessors or ASICs are much slower and consume a lot
more power [9].
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3. Relation of the HNN to the Optimal and Multi-
stage Detectors

High speed and low power consumption are not the only advantages of
the HNN detector. We will show that the well-known Multistage Detector
(MSD) is in fact a special case of a discrete-time approximation of the
proposed HNN detector. In particular, under certain conditions, the HNN
detector corresponds to an infinite number of stages MSD, thus sharing
the same near-far resistance and near-optimal performance characteristics.
Moreover, the additional flexibility that the HNN detector allows for, in terms
of controlling the RC constants of the analog circuits and the slopes of the
nonlinearities, facilitates the design of HNN receivers capable of delivering
near-optimal performance in regions determined by the relative energies and
cross-correlation values of the user signature waveforms.

Consider the discrete-time approximation of Eqn. (8) that describes
the equations of motion of the ith neuron of the HNN: AUi = - - +

E•iýj Tij Vj + -i. If the activation function of the neurons is the sign(.)
function, the dynamics of the i2h neuron at the discrete-time instant t
m + 1, are described by the following equation:

Vi + 1) = g(U (m + 1)) = sign(U (m) + =U (m))
sign(Ui(m) - U'() + Ej, TijVj(m) + Ii) (10)

By setting 7 = 1 and substituting in Eqn. (10) for the values of T and I
for the proposed HNN detector, (10) becomes
V2(m + 1) = sign(yi - EiZ j hijVj(m)), which can be written in matrix
form as

V(m + 1) = sign (y - (H - E)V(m)) (11)

Now by comparing Eqn. (11) and Eqn. (5) we see that for the special
case in which the RC constant of the HNN circuit is equal to 7 - 1 and
g(.) = sign(.), the estimate of the (rm+ 1)th stage of a MSD coincides with
the output of a discrete-time approximation of this HNN at time instant
t =m -I- 1. Moreover, since the update of the estimate of each MSD
stage is being performed synchronously, an infinite number of stages MSD
is essentially equivalent to a discrete-time HNN operating in synchronous
(fully parallel) updating mode, which may lead to limit cycles of length 2
as shown by Bruck [10]. An analog HNN with continuous updating, or an
asynchronously updated discrete-time HNN, does not exhibit oscillations,
and thus in principle it can outperform even an infinite number of stages
MSD. In the sequel we will demonstrate that the HNN detector can be
designed to outperform the MSD, and that its performance can be further
improved and approach the optimal by selecting the appropriate values for
the RC constant and the nonlinearity slope of the neuron units.

4. Comparison - Regions of Failure
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Figure 1: Regions of Failure (dark regions) for CD, 2-stage MSD, OMD,
and randomly initialized HNN: Vertical axis = logo(near-far-ratio); Hor-
izontal axis = normalized signature waveforms cross-correlation.

Let us first consider a K = 2 synchronous CDMA users noiseless case.
Assume that at a given time instant the symbols transmitted by the two
users are b,,et = [bo bl]T, and that the energy of the second user remains
constant while the energy of the first user is varying. The cross correlation
matrix can be expressed as:

H = E1/2HnormEl/
2 

-

e1/ 0] [1 h e1/2 0] (12)
= 0 1 "h 1 " 0 1

where, h E (-1, 1) is the normalized cross-correlation of the users signature
waveforms and e E 1R is the near-far-ratio which coincides with the energy
of the first user. In the noiseless case, the sampled outputs of the matched
filter-bank can be expressed as y = H bsent. By evaluating the outputs
of a multiuser detector for various values of h and e and comparing them
with the originally transmitted symbols bsent, we can estimate its Region
Of Failure (ROF). In Figure 1 we compare the Conventional (CD), 2-stage
MSD, OMD, with a randomly initialized HNN detector by plotting their
ROFs (dark regions) assuming that the originally transmitted information
vector was bsend= [bo bl]T = [-I _ 1 ]T. In each of the plots, the vertical
axis corresponds to the decimal logarithm of the near-far ratio (logio e), and
the horizontal to the value of the cross-correlation h. For each point in the
ROF, bdetected 0 b/.

As we can see from Figure 1, for heavily correlated signature waveforms
the CD exhibits the worst performance producing the correct estimate only
when the energies of the users are close to each other. The 2-stage MSD
performs well when one of the users is much stronger than the other (since
the strong user can be estimated more accurately), but fails in a region
where the energy of one user is larger than that of the other but not enough
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Figure 2: Regions of Failure of the HNN detector initialized with the
CD estimates U(0) = y. Left: a = 100, r = RC = 1. ROF of HNN
almost same as for the 2-stage MSD with the same initialization. Right:
a = 5.0, r = RC = 1. ROF of HNN becomes smaller when using a
smoother non-linearity.

to allow its correct estimation. For the noiseless case and range of h and e
shown in Figure 1, the OMD never fails to produce the correct estimate for
the transmitted symbols. The randomly initialized HNN exhibits a much
larger ROF than the 2-stage MSD. In particular, since a randomly initialized
HNN is guaranteed to converge only to a local minimum of the OMD's
objective function, its ROF corresponds to objective functions with either
two local minima or a unique global minimum that is however different from
the originally transmitted symbols.

However, as we have shown in the previous section, an HNN detector
initialized with the outputs of the CD (matched filter bank) y corresponds,
under certain conditions, to an infinite-number-of-stages long MSD. The
particular conditions, are that the neurons' nonlinearity is steep (a is large
in Eqn. (6)) such that it approximates the sign(.) function, and that the
r = RC constant of the neuron units is equal to one. In Figure 2(left) we
plot the ROFs for such an HNN detector with r = RC = 1.0 and ca = 100
and we compare it to the ROF of the 2-stage MSD. As we can see, the ROF
of the HNN detector roughly coincides with that of the 2-stage MSD. On
the other hand, from the right part of the same Figure we can see that the
ROF of the HNN can be made smaller by making the nonlinearity of the
neurons smoother (a = 5.0, r = 1.0). Finally, in Figure 3 we plot the ROF
of the HNN for a = 5.0 and several values of the RC constant. It is evident
from Figure 3, that by increasing slightly the value of 7, the ROF of the
HNN can be made much smaller than that of the MSD, and can approach
that of the OMD.
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Figure 3: HNN detector with g(x) = sigm(5.0 x), and U(0) y:
Regions of Failure versus the value of the 7 = RC for fixed a = 5.0. As
RC increases, the IINN's ROF approaches that of the OMD.

5. Experimental Results

In Figure 4, we compare the CD, 2-stage MSD, HNN and OMD detectors
by evaluating their error probabilities in a 2 users' synchronous CDMA case
with noise. The decimal logarithm of the Bit-Error-Rates (BER) are plotted
versus the value of the near-far-ratio (e 2 /el in decibel) for h = 0.7. The
Signal-to-Noise-Ratio of user 1 (SNR 1 ) is fixed at 8dB, and the BER of user
1 is being evaluated. The 2-stage MSD detector exhibits worst performance
when the energies of the two users are not very dissimilar, as expected,
whereas the HNN's and OMD's performance are practically indistinguish-
able.

In another experiment K = 5 synchronous users employ spreading of
length L = 4 derived according to the binary representation of the identifying
user index with the addition of a leading +1. The weak users 2,4,5 transmit
with unit normalized energy, whereas the energy of user 1 is 30 times larger
and the energy of user 3 is 10 times larger than that of the other users.
In Table 1 we show the cumulalive (calculated over all the active users)
BER that the CD, 10-stage MSD, HNN and Optimal multi-user detectors
achieve. The HNN detector used had parameters a = 1.0 and r = 1.0.
In the same setting we investigated how varying the time-constant of the
HNN circuit (T) and the slope of the HNN neuron's nonlinearity (o) affects
the BER performance. The same set of K = 5 active users as above was
used for this experiment. First we evaluated the performance variations due
to the slope a changes for fixed 7 = 1.0 and SNR 2 = 8 db (w.r.t. the
weak users). Then we evaluated the BER performance for fixed o = 1.0
and varying 7. The results are summarized in Table 2.
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Figure 4: Error probability comparison of the CD, 2-stage MSD, HNN
and OMD detectors for K = 2, h = 0.7 and SNR 1 = 8 dB, vs. the ratio
e2/el. HNN parameters: a 5.0, RC = 2.5.

SNR CD MSD-10 HNN OMD
7 -0.717526 -1.52563 -1.78888 -1.90427
8 -0.723444 -1.69699 -1.92942 -2.38535
9 -0.728022 -1.78329 -2.34044 -2.56229

10 -0.745812 -1.84727 -2.52396 -3.30211
11 -0.751903 -1.89566 -2.81458 -3.41664

Table 1: Comparison of CD, MSD-10, HNN and OMD detectors. K
5, L = 4, E1 = 30, E3 - 10, E2 = E4 E 5 = 1. Cumulative BER vs.
SNR (w.r.t. the weak users).

a BER r=RC BER
1 -1.92942 .6 -1.80811
5 -2.26717 .9 -1.91424

10 -2.31641 1 -1.92942
20 -1.93785 10 -2.27184
25 -1.74430 100 -1.84510

Table 2: K = 5 synchronous CDMA users; Left: BER vs. a of the
HNN nonlinearity, for 7- = 1.0; Right: BER vs. r = RC of HNN, for
a = 1.0.
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6. Conclusions

The relation of HNN based receivers to the Optimal (but infeasible) CDMA
Multiuser Detector (OMD) and the well-known and extensively studied sub-
optimal Multistage Detector (MSD) was investigated. There is range for
the slope of the neuron nonlinearities (a) where the BER performance of
the HNN approaches that of the optimal detector. This was demonstrated
for the 2-user case by comparing the corresponding Regions-Of-Failure and
has been verified for a larger number of users by simulations. In a similar
fashion, the value of the -T = RC constant of the neural circuit affects the
performance of the HNN. It has been shown that for a particular set of val-
ues for parameters ce and 7 = RC, a synchronously updated discrete-time
HNN is equivalent to an infinite-number-of-stages long MSD. In addition,
the design and engineering flexibility that the HNN approach offers as well
as the almost instantaneous convergence when implemented in analog VLSI
hardware, makes it attractive for real time multi-user demodulation.
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